pointwise convergence

(redirected from Almost-everywhere convergence)

pointwise convergence

[′pȯint‚wīz kən′vər·jəns]
(mathematics)
A sequence of functions ƒ1, ƒ2,… defined on a set S converges pointwise to a function ƒ if the sequence ƒ1(x), ƒ2(x),… converges to ƒ(x) for each x in S.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.