almost-periodic function

almost-periodic function

[′ȯl‚mōst ‚pir·ē′äd·ik ′fəŋk·shən]
(mathematics)
A continuous function f (x) such that for any positive number ε there is a number M so that for any real number x, any interval of length M contains a nonzero number t such that | f (x + t) -f (x)|<>
References in periodicals archive ?
Grande, "Hierarchy of almost-periodic function spaces," Rendiconti di Matematica, vol.
Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand-Reinhold, New York, NY, USA, 1971.
Prouse, Almost-periodic functions and functional equations, Van Nostrand Reinhold Co., New York Toronto, Ont.-Melbourne, 1971.
Levitan and V.V.Zhikov, Almost-periodic functions and functional differential equations, Cambridge University Press, Cambridge, 1982.
Li, Composition of pseudo almost-periodic functions and semilinear differential equations.