(redirected from Automobil)
Also found in: Dictionary, Thesaurus, Legal.
Related to Automobil: mobile


automobile, self-propelled vehicle used for travel on land. The term is commonly applied to a four-wheeled vehicle designed to carry two to six passengers and a limited amount of cargo, as contrasted with a truck, which is designed primarily for the transportation of goods and is constructed with larger and heavier parts, or a bus (or omnibus or coach), which is a large public conveyance designed to carry a large number of passengers and sometimes additionally small amounts of cargo. For operation and technical features of automobiles, differential; fuel injection; ignition; internal-combustion engine; lubrication; muffler; odometer; shock absorber; speedometer; steering system; suspension; tachometer; tire; transmission.

Automobile Propulsion Systems

Reciprocating Internal-Combustion Engines

The modern automobile is usually driven by a water-cooled, piston-type internal-combustion engine, mounted in the front of the vehicle; its power may be transmitted either to the front wheels, to the rear wheels, or to all four wheels. Some automobiles use air-cooled engines, but these are generally less efficient than the liquid-cooled type. In some models the engine is carried just forward of the rear wheels; this arrangement, while wasteful of space, has the advantage of better weight distribution. Although passenger vehicles are usually gasoline fueled, diesel engines (which burn a heavier petroleum oil) are employed both for heavy vehicles, such as trucks and buses, and for a small number of family sedans. Both diesel and gasoline engines generally employ a four-stroke cycle.

The Wankel Engine

For some years, it was hoped that the Wankel engine, a rotary internal-combustion engine developed by Felix Wankel of Germany in 1954, might provide an alternative to the reciprocating internal-combustion engine because of its low exhaust emissions and feasibility for mass production. In this engine a three-sided rotor revolves within an epithrochoidal drum (combustion chamber) in which the free space contracts or expands as the rotor turns. Fuel is inhaled, compressed, and fired by the ignition system. The expanding gas turns the rotor and the spent gas is expelled. The Wankel engine has no valves, pistons, connecting rods, reciprocating parts, or crankshaft. It develops a high horsepower per cubic inch and per pound of engine weight, and it is essentially vibrationless, but its fuel consumption is higher than that of the conventional piston engine.

Alternative Fuels and Engines

Internal-combustion engines consume relatively high amounts of petroleum, and contribute heavily to air pollution; therefore, other types of fuels and nonconventional engines are being studied and developed. An alternative-fuel vehicle (AFV) is a dedicated flexible-fuel vehicle (one with a common fuel tank designed to run on varying blends of unleaded gasoline with either ethanol or methanol) or a dual-fuel vehicle (one designed to run on a combination of an alternative fuel and a conventional fuel) operating on at least one alternative fuel. An advanced-technology vehicle (ATV) combines a new engine, power train, and drive train system to significantly improve fuel economy. It is estimated that more than a half million alternative-fuel vehicles were in use in the United States in 2002; 50% of these operate on liquefied petroleum gas (LPG, or propane) and almost 25% use compressed natural gas (CNG).

The ideal alternative-fuel engine would burn fuel much more cleanly than conventional gasoline-powered internal-combustion engines and yet still be able to use the existing fuel infrastructure (i.e., gas stations). Compressed natural gas, propane, hydrogen, and alcohol-based substances (gasohol, ethanol, methanol, and other “neat” alcohols) all have their proponents. However, although these fuels burn somewhat cleaner than gasoline, the use of all of them involves trade-offs. For example, because they take up more space per mile driven, these alternatives require larger fuel capacities or shorter distances between refueling stops. In addition, conventional automobiles may require extensive modifications to use alternative fuels; for example, to use gasohol containing more than 17% ethanol, the spark plugs, engine timing, and seals of an automobile must be modified; since 1998, however, many U.S. automobiles have been manufactured with equipment that enables them to run on E85, a mixture of 85% ethanol and 15% gasoline. Fuels derived from plant materials, such as ethanol, are a popular concept because they do not deplete the world's oil reserves; in various locations, “biodiesel” test cars have run on fuel similar to sunflower-seed oil. Similarly, dual-fuel (gasoline-diesel and gasoline-propane) and water-fuel-emulsion cars are being tested.

Alternative propulsion systems are also have been developed or studied. Steam engines, which were once more common than gasoline engines, have been experimented with because they give off fewer noxious emissions; they are, however, less efficient than internal-combustion engines. Battery-powered electric engines, used in some early automobilies and later mainly for local delivery vehicles, are now used in automobiles capable of highway speeds, but they are restricted to shorter trips because of limitations on the storage batteries that power the motors and the time required to recharge the batteries. Electric (and hybrid) automobiles can use regenerative braking, in which the motor operates in reverse and acts as a generator, to help recharge the batteries. A true mass-market all-electric automobile was first sold to consumers in late 2010.

Some engineers worry that widespread adoption of electric cars might actually generate more air pollution, because additional electric power plants would be needed to recharge their batteries. Therefore, design and research work has also intensified on solar batteries, but they are generally not yet powerful enough to power such vehicles. The most promising technology for electric engines is the fuel cell, but fuel cells currently are too expensive for practical applications.

Hybrid vehicles, or hybrid electric vehicles (HEVs), are powered by two or more energy sources, one of which is electricity, to produce a high-miles-per-gallon, low-emission drive. There are two types of HEVs, series and parallel. In a series hybrid, all of the vehicle power is provided from one source. For example, an electric motor drives the vehicle from the battery pack and the internal combustion engine powers a generator that charges the battery. In a parallel hybrid, power is delivered through both paths, both the electric motor and the internal combustion engine powering the vehicle. Thus, the electric motor may help power the vehicle while idling and during acceleration. The internal combustion engine takes over while cruising, powering the drive train and recharging the electric motor's battery. Some hybrids can operate in electric-only mode. Automobiles with gasoline-electric hybrid engines first appeared on the consumer market in 1999; unhampered by the AFV's limitations, sales of these vehicles increased steadily at the beginning of the 21st cent.

Automobiles and the Environment

Pollutants derived from automobile operation have begun to pose environmental problems of considerable magnitude. It has been calculated, for example, that 70% of the carbon monoxide, 45% of the nitrogen oxides, and 34% of the hydrocarbon pollution in the United States can be traced directly to automobile exhausts (see air pollution). In addition, rubber (which wears away from tires), motor oil, brake fluid, and other substances accumulate on roadways and are washed into streams, with effects nearly as serious as those of untreated sewage. A problem also exists in disposing of the automobiles themselves when they are no longer operable.

In an effort to improve the situation, the U.S. government has enacted regulations on the use of the constituents of automobile exhaust gas that are known to cause air pollution. These constituents fall roughly into three categories: hydrocarbons that pass through the engine unburned and escape from the crankcase; carbon monoxide, also a product of incomplete combustion; and nitrogen oxides, which are formed when nitrogen and oxygen are in contact at high temperatures. Besides their own toxic character, hydrocarbons and nitrogen oxides undergo reactions in the presence of sunlight to form noxious smog. Carbon monoxide and hydrocarbons are rather easily controlled by the use of high combustion temperatures, leaner fuel mixtures, and lower compression ratios in engines. Unfortunately, the conditions that produce minimum emission of hydrocarbons tend to raise emission of nitrogen oxides. To some extent this difficulty is solved by adding recycled exhaust gas to the fuel mixture, thus avoiding the oversupply of oxygen that favors formation of nitrogen oxides.

The introduction of catalytic converters in the exhaust system has provided a technique for safely burning off hydrocarbon and carbon-monoxide emissions. The fragility of the catalysts used in these systems required the elimination of lead compounds previously used in gasoline to prevent engine knock. California, which has the most stringent air-pollution laws in the United States, requires further special compounding of gasoline to control emissions, and several states have mandated that ethanol be mixed with gasoline; as with the elimination of lead, measures taken to control air pollution have a negative impact on fuel efficiency. In 2009 the United States adopted more stringent mileage and emission standards (effective in 2012 and based on California's standards), which were designed to produce the first significant increases in vehicle efficiency and decreases in vehicle pollution since the mid-1980s. By the mid-2010s concerns about automobile pollution and global warming had led a number of foreign countries to ban the sale of gasoline- and diesel-powered cars and vans sometime before mid-century.

Automotive Safety

Fatalities due to automobile accidents have stimulated improvements in automotive safety design. The first innovation involves creating a heavy cage around the occupants of the automobile, while the front and rear of the car are constructed of lighter materials designed to absorb impact forces. The second safety system uses seat belts to hold occupants in place. This was largely ineffective until states in the United States began passing laws requiring seat belt use. The third system is the air bag; within a few hundredths of a second after a special sensor detects a collision, an air bag in the steering wheel or dashboard inflates to prevent direct human impact with the wheel, dashboard, or windshield (newer vehicles sometimes include side air bags, to protect occupants from side collisions). Other advances in vehicle safety include the keyless ignition, which makes it impossible for a driver to start a car while under the influence of alcohol (over half of all vehicle fatalities involve at least one driver who has used alcohol) and antilock braking systems, which prevent an automobile's wheels from locking during braking.

Development of the Automobile

The automobile has a long history. The French engineer Nicolas Joseph Cugnot built the first self-propelled vehicle (Paris, 1789), a heavy, three-wheeled, steam-driven carriage with a boiler that projected in front; its speed was c.3 mph (5 kph). In 1801 the British engineer Richard Trevithick also built a three-wheeled, steam-driven car; the engine drove the rear wheels. Development of the automobile was retarded for decades by over-regulation: speed was limited to 4 mph (6.4 kph) and until 1896 a person was required to walk in front of a self-propelled vehicle, carrying a red flag by day and a red lantern by night. The Stanley brothers of Massachusetts, the most well-known American manufacturers of steam-driven autos, produced their Stanley Steamers from 1897 until after World War I.

The development of the automobile was accelerated by the introduction of the internal-combustion engine. Probably the first vehicle of this type was the three-wheeled car built in 1885 by the engineer Karl Benz in Germany. Another German engineer, Gottlieb Daimler, built an improved internal-combustion engine c.1885. The Panhard car, introduced in France by the Daimler company in 1894, had many features of the modern car. In the United States, internal-combustion cars of the horseless buggy type were manufactured in the 1890s by Charles Duryea and J. Frank Duryea, Elwood Haynes, Henry Ford, Ransom E. Olds, and Alexander Winton. Many of the early engines had only one cylinder, with a chain-and-sprocket drive on wooden carriage wheels. The cars generally were open, accommodated two passengers, and were steered by a lever.

The free growth of the automobile industry in the early 20th cent. was threatened by the American inventor George Selden's patent, issued in 1895. Several early manufacturers licensed by Selden formed an association in 1903 and took over the patent in 1907. Henry Ford, the leader of a group of independent manufacturers who refused to acknowledge the patent, was engaged in litigation with Selden and the association from 1903 until 1911, when the U.S. Circuit Court of Appeals ruled that the patent, although valid, covered only the two-cycle engine; most cars, including Ford's, used a four-cycle engine. The mass production of automobiles that followed, and the later creation of highways linking cities to suburbs and region to region, transformed American landscape and society.

Since 2010 there has been an increased focus on developing a practical automobile in which a computerized driving system either greatly aids or completely replaces the human driver. Although the technology for an automated vehicle has been explored since the 1920s, real work on semiautonomous and autonomous vehicles did not progress until the 1980s and the development of microcomputers, and even then the technology was not commercially practical. In the early 21st cent. an increasing number of automobile manufacturers begin including automatic safety equipment that activates when the vehicle's computerized systems sense conditions such as impending vehicle instability or collision and takes measures, such as automated braking, to avoid crashes and passenger injury. Significant advances also have been made in the development of self-driving vehicles, a number of which have been road-tested successfully in public traffic since 2010. In some cases, autonomous driving capabilities have been incorporated into cars that are commercially available.


See D. L. Lewis and L. Goldstein, The Automobile and American Culture (1983); J. J. Flink, The Automobile Age (1988); B. Olsen and J. Cabadas, The American Auto Factory (2002); P. Wollen and J. Kerr, ed., Autopia (2003); S. Parissien, The Life of the Automobile (2014).

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.


(mechanical engineering)
A four-wheeled, trackless, self-propelled vehicle for land transportation of as many as eight people. Also known as car.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.


A self-propelled land vehicle, usually having four wheels and an internal combustion engine, used primarily for personal transportation. Other types of motor vehicles include buses, which carry large numbers of commercial passengers, and medium- and heavy-duty trucks, which carry heavy or bulky loads of freight or other goods and materials. Instead of being carried on a truck, these loads may be placed on a semitrailer, and sometimes also a trailer, forming a tractor-trailer combination which is pulled by a truck tractor.

The automobile body is the assembly of sheet-metal, fiberglass, plastic, or composite-material panels together with windows, doors, seats, trim and upholstery, glass, and other parts that form enclosures for the passenger, engine, and luggage compartments. The assembled body structure may attach through rubber mounts to a separate or full frame (body-on-frame construction), or the body and frame may be integrated (unitized-body construction). In the latter method, the frame, body parts, and floor pan are welded together to form a single unit that has energy-absorbing front and rear structures, and anchors for the engine, suspension, steering, and power-train components. A third type of body construction is the space frame which is made of welded steel stampings. Similar to the tube chassis and roll cage combination used in race-car construction, non-load-carrying plastic outer panels fasten to the space frame to form the body. See Composite material

The frame is the main structural member to which all other mechanical chassis parts and the body are assembled to make a complete vehicle. In older vehicle designs, the frame is a separate rigid structure; newer passenger-car designs have the frame and body structure combined into an integral unit, or unitized body. Subframes and their assembled components attach to the side rails at the front and rear of the unitized body. The front subframe carries the engine, transmission or transaxle, lower front suspension, and other mechanical parts. The rear subframe, if used, carries the rear suspension and rear axle.

The suspension supports the weight of the vehicle, absorbs road shocks, transmits brake-reaction forces, helps maintain traction between the tires and the road, and holds the wheels in alignment while allowing the driver to steer the vehicle over a wide range of speed and load conditions. The action of the suspension increases riding comfort, improves driving safety, and reduces strain on vehicle components, occupants, and cargo. The springs may be coil, leaf, torsion bar, or air. Most automotive vehicles have coil springs at the front and either coil or leaf springs at the rear. See Automotive suspension

The steering system enables the driver to turn the front wheels left or right to control the direction of vehicle travel. The rotary motion of the steering wheel is changed to linear motion in the steering gear, which is located at the lower end of the steering shaft. The linear motion is transferred through the steering linkage to the steering knuckles, to which the front wheels are mounted. Steering systems are classed as either manual steering or power steering, with power assist provided hydraulically or by an electric motor.

A brake is a device that uses a controlled force to reduce the speed of or stop a moving vehicle, or to hold the vehicle stationary. The automobile has a friction brake at each wheel. When the brake is applied, a stationary surface moves into contact with a moving surface. The resistance to relative motion or rubbing action between the two surfaces slows the moving surface, which slows and stops the vehicle.

The engine supplies the power to move the vehicle. The power is available from the engine crankshaft after a fuel, usually gasoline, is burned in the engine cylinders. Most automotive engines are located at the front of the vehicle and drive either the rear wheels or the front wheels through a drive train or power train made up of gears, shafts, and other mechanical and hydraulic components. Most automotive vehicles are powered by a spark-ignition four-stroke-cycle internal combustion engine. The inline four-cylinder engine and V-type six-cylinder engine are the most widely used, with V-8 engines also common. Other automotive engines have three, five, ten, and twelve cylinders. Some passenger cars and trucks have diesel engines. Some automotive spark-ignition and diesel engines are equipped with a supercharger or turbocharger. See Automotive engine, Diesel engine, Engine, Ignition system, Turbocharger

Most automotive engines have electronic fuel injection instead of a carburetor. A computer-controlled electronic engine control system automatically manages various emissions devices and numerous functions of engine operation, including the fuel injection and spark timing. This allows optimizing power and fuel economy while minimizing exhaust emissions. See Carburetor, Control systems, Fuel injection

The power available from the engine crankshaft to do work is transmitted to the drive wheels by the power train, or drive train. In the front-engine rear-drive vehicle, the power train consists of a clutch and manual transmission, or a torque converter and an automatic transmission; driveshafts and Hooke (Cardan) universal joints; and rear drive axle that includes the final drive, differential, and wheel axle shafts. In the typical front-engine front-drive vehicle, the power train consists of a clutch and manual transaxle, or a torque converter and an automatic transaxle. The final drive and differential are designed into the transaxle, and drive the wheels through half-shafts with constant-velocity (CV) universal joints. See Clutch, Gear

The transmission is the device in the power train that provides different forward gear ratios between the engine and drive wheels, as well as neutral and reverse. The two general classifications of transmission are manual transmission, which the driver shifts by hand, and automatic transmission, which shifts automatically. To shift a manual transmission, the clutch must first be disengaged. However, some vehicles have automatic clutch disengagement for manual transmissions, while other vehicles have a limited manual-shift capability for automatic transmissions. See Automotive transmission

In the power train, the final drive is the speed-reduction gear set that drives the differential. The final drive is made up of a large ring gear driven by a smaller pinion, or pinion gear. This provides a gear reduction of about 3:1; the exact value can be tailored to the engine, transmission, weight of the vehicle, and performance or fuel economy desired.

In drive axles, the differential is the gear assembly between axle shafts that permits one wheel to rotate at a speed different from that of the other (if necessary), while transmitting torque from the final-drive ring gear to the axle shafts. When the vehicle is cornering or making a turn, the differential allows the outside wheel to travel a greater distance than the inside wheel; otherwise, one wheel would skid, causing tire wear and partial loss of control. See Differential

A wheel is a disc or a series of spokes with a hub at the center and a rim around the outside for mounting of the tire. The wheels of a vehicle must have sufficient strength and resiliency to carry the weight of the vehicle, transfer driving and braking torque to the tires, and withstand side thrusts over a wide range of speed and road conditions. Wheel size is primarily determined by the load-bearing strength of the tire.

The use of solid-state electronic devices in the automobile began during the 1960s, when the electromechanical voltage regulator of the alternator, was replaced by a transistorized voltage regulator. This was followed in the 1970s by electronic ignition, fuel injection, and cruise control. Since then, electronic devices and systems on the automobile have proliferated. These include engine and power train control, air bags, antilock braking, traction control, suspension and ride control, remote keyless entry, memory seats, driver information and navigation systems, cellular telephone and mobile communications systems, and onboard diagnostics. See Feedback circuit

The self-diagnostic capability of the vehicle computer, power-train or engine control module, or system controller may be aided by a memory that stores information about malfunctions that have occurred and perhaps temporarily disappeared. When recalled from the memory, this information can help the service technician diagnose and repair the vehicle more quickly, accurately, and reliably.

McGraw-Hill Concise Encyclopedia of Engineering. © 2002 by The McGraw-Hill Companies, Inc.

automotive safety systems

Vehicular systems that help prevent an accident are increasing rapidly. Combined with all the computer-based entertainment, navigation, dashboard and engine control, electronic systems comprised more than 20% of the car's value by 2017. Automotive safety systems are designed to either work automatically or require drivers to activate them when desired. See automotive systems and microcontroller.

Old Passive
Passive systems require no action on the part of the driver other than buckling seat belts. Head rests, airbags, anti-lock braking (see ABS) and tire pressure monitoring (see TPM) are passive safety measures that date back to the 1960s and 1970s in the U.S.

New Passive
Automatic braking, blind spot alerts, rear blind zone monitoring, cyclist and temperature detection, driver alerts and adaptive headlights are modern passive systems. See collision avoidance system, blind spot monitoring, driver alert, cyclist detection, pedestrian detection, hot car detection and adaptive headlights.

New Active
Active systems must be turned on by the driver. Cruise control that keeps a set distance, lane changing warnings, self-parking and self-driving are examples. See adaptive cruise control, lane departure system, self-parking car and self-driving car.

Safety Systems in a Lincoln
A TV commercial for the 2019 Lincoln Nautilus touts its safety systems by displaying the checklist that appears on the dashboard when starting the car. (Image courtesy of Ford Motor Company.)

automotive systems

The amount of electronics in vehicles increases every year. For example, there can be more than a hundred chips, many of which contribute to driver safety. See automotive safety systems, ITS, V2X, ITS, telematics, embedded system, drive-by-wire, self-driving car, semiautonomous vehicle, heads-up display, DSRC, CAN bus, FlexRay, SYNC and ISO 26262.


(Intelligent Transportation Systems) An umbrella term for vehicle automation. See ITS America, V2X, IDB, telematics and automotive systems.
Copyright © 1981-2019 by The Computer Language Company Inc. All Rights reserved. THIS DEFINITION IS FOR PERSONAL USE ONLY. All other reproduction is strictly prohibited without permission from the publisher.
References in periodicals archive ?
More interestingly, she does observe a reciprocal relationship between the development of the 'thriller' genre in literature and film in their use of automobiles. Here, as elsewhere, Muller's grasp of film history is impressive, but at the same time her corpus illustrates one of the problems of this kind of 'intermedial' cultural history.
Glabus joined Porsche Automobil Holding SE in 2010 as Head of Communications.
Volkswagen AG (Frankfurt: VOW) will complete its long-sought purchase of Porsche Automobil Holding SE (Frankfurt: PAH3), following years of on-again, off-again courtship between the two companies.
Qatar has over the last couple of years splashed out on stakes in Porsche Automobil Holding and German builder Hochtief .
Stuttgart-based Porsche Automobil Holding SE reiterated in its full-year report that it had a pretax loss of 4.4 billion euros because of costs related to its attempted takeover of Volkswagen AG.
Summary: Today the Supervisory Board of Porsche Automobil Holding SE, Stuttgart, together with Dr.
Swedish truck and bus manufacturer Scania AB (OMX Stockholm:SCV A) (OMX Stockholm:SCV B) has rejected a mandatory bid offer from German automaker Porsche Automobil Holding (POR3.XE), the Swedish firm announced in conjunction with its results on Tuesday (3 February).
Its members include Autoroutes du Sud de la France, BAE Systems, BMW, Robert Bosch, Fiat, Reial Automobil Club de Catalunya, Renault, Siemens, Telecom Italia, Thales Alenia Space France and Vodafone.
CATERHAM Cars has linked up with Italian importer Automobil Trivellato to sell its new Euro IV emission rules-compliant Caterham Seven CSR200.
The cars will be transported to Venice where importer Automobil Trivellato is based next to the Adria race circuit where the cars can be demonstrated and tested by potential buyers.
The affected customer will receive an offer that the participating Volkswagen dealership will buy back the original model for the current value determined by the independent institution, Deutsche Automobil Treuhand, if the customer then buys from the same dealership a new or year-old vehicle which would not be affected by driving restrictions.