Brownian movement

Also found in: Dictionary, Thesaurus, Medical.

Brownian movement or motion,

zigzag, irregular motion exhibited by minute particles of matter when suspended in a fluid. The effect has been observed in all types of colloidal suspensions (see colloidcolloid
[Gr.,=gluelike], a mixture in which one substance is divided into minute particles (called colloidal particles) and dispersed throughout a second substance. The mixture is also called a colloidal system, colloidal solution, or colloidal dispersion.
..... Click the link for more information.
)—solid-in-liquid, liquid-in-liquid, gas-in-liquid, solid-in-gas, and liquid-in-gas. It is named for the botanist Robert Brown who observed (1827) the movement of plant spores floating in water. The effect, being independent of all external factors, is ascribed to the thermal motion of the molecules of the fluid. These molecules are in constant irregular motion with a velocity proportional to the square root of the temperature. Small particles of matter suspended in the fluid are buffeted about by the molecules of the fluid. Brownian motion is observed for particles about 0.001 mm in diameter; these are small enough to share in the thermal motion, yet large enough to be seen with a microscope or ultramicroscope. The first satisfactory theoretical treatment of Brownian motion was made by Albert Einstein in 1905. Jean Perrin made a quantitative experimental study of the dependence of Brownian motion on temperature and particle size that provided verification for Einstein's mathematical formulation. Perrin's work is regarded as one of the most direct verifications of the kinetic-molecular theory of gaseskinetic-molecular theory of gases,
physical theory that explains the behavior of gases on the basis of the following assumptions: (1) Any gas is composed of a very large number of very tiny particles called molecules; (2) The molecules are very far apart compared to their sizes,
..... Click the link for more information.
The Columbia Electronic Encyclopedia™ Copyright © 2013, Columbia University Press. Licensed from Columbia University Press. All rights reserved.

Brownian movement

The irregular motion of a body arising from the thermal motion of the molecules of the material in which the body is immersed. Such a body will of course suffer many collisions with the molecules, which will impart energy and momentum to it. Because, however, there will be fluctuations in the magnitude and direction of the average momentum transferred, the motion of the body will appear irregular and erratic.

In principle, this motion exists for any foreign body suspended in gases, liquids, or solids. To observe it, one needs first of all a macroscopically visible body; however, the mass of the body cannot be too large. For a large mass, the velocity becomes small. See Kinetic theory of matter

McGraw-Hill Concise Encyclopedia of Physics. © 2002 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Brownian Movement


the disorderly motion of small particles (dimensions of several microns or less) suspended in a liquid or gas; takes place under the influence of collisions of molecules of the surrounding medium. It was discovered by R. Brown in 1827. The suspended particles, visible only under a microscope, move independently of each other and describe complex zigzag trajectories. Brownian movement does not diminish with time and does not depend on the chemical properties of the medium. The intensity of Brownian movement increases with the temperature of the medium and with the reduction of its viscosity and the particle size.

A systematic explanation of Brownian movement was given by A. Einstein and M. Smoluchowski in 1905-06 on the basis of kinetic molecular theory. According to this theory, the molecules of a liquid or gas exist in constant thermal movement, and the momenta of various molecules do not have the same magnitude and direction. If the surface of a particle placed in such a medium is small, as is the case for a Brownian particle, then the impacts experienced by the particles—caused by the surrounding molecules—will not be exactly compensated. Consequently, as a result of this “bombardment” by molecules, the Brownian particle falls into disorderly motion, changing the magnitude and direction of its velocity approximately 1014 times per second.

In observation of Brownian movement (see Figure 1), the position of a particle is recorded after equal time intervals. Of course, between observations the particle moves non-rectilinearly, but the connection of the successive positions by straight lines yields an arbitrary picture of the motion.

The principles of Brownian movement serve as graphic confirmation of the fundamental hypotheses of kinetic molecular theory. The general picture of Brownian movement is described by Einstein’s law for the mean square displacement of the particle Δx2 in any direction x. If within the time between two measurements a sufficiently large

Figure 1. Brownian movement of a particle of gamboge in water. The points indicate the successive positions of the particle over 30-second intervals. The observations were performed by J. Perrin under a microscope at a magnification of approximately 3,000.

number of collisions of the particle with molecules takes place, then Δx2 is proportional to this time τ:

(1) Δx2 = 2Dτ

Here D is the diffusion coefficient, which is determined by the resistance exerted by any medium in which the particle moves. For a specific particle of radius a, it is equal to

(2) D = kT/6πηa

where k is the Boltzmann constant, T is the absolute temperature, and η is the dynamic viscosity of the medium.

The theory of Brownian movement explains the random motion of a particle under the influence of random forces caused by molecules and frictional forces. The random character of the force implies that its action during the time interval τ1 is completely independent of the action during the time interval τ2, unless these intervals overlap. The average force, after a sufficiently large period of time, is equal to zero, and the average displacement Δx of a Brownian particle is also found to be zero.

The conclusions of the theory of Brownian movement agree brilliantly with experiments. Formulas (1) and (2) were corroborated by the measurements of J. Perrin and T. Svedberg (1906). On the basis of these relations, the Boltzmann constant and Avogadro’s number were experimentally determined to be in accordance with their values obtained by other methods.

The theory of Brownian movement has played an important role in the justification of statistical mechanics; it is of practical significance as well. Above all, Brownian movement limits the accuracy of measuring instruments—for example, the limit of accuracy of the readings of a mirror galvanometer is determined by the chatter of the mirror, which is similar to that of a Brownian particle being bombarded by air molecules; the laws of Brownian movement determine the random movement of electrons, which causes the noise in electric circuits; the dielectric losses in dielectrics are explained by the random motions of the molecule-dipoles that make up the dielectric; and the random motion of ions in solutions of electrolytes increases their electrical resistance.


Einstein, A., and M. Smoluchowski. Braunovskoe dvizhenie. Moscow-Leningrad, 1936. (Translated from German; with supplementary articles by Iu. A. Krutkov and B. I. Davydov.)
Feynman, R., R. Leighton, and M. Sands. Feinmanovskie lektsii po fizike, vol. 4. Moscow, 1965. (Translated from English.)
The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.

Brownian movement

[′brau̇n·ē·ən ‚müv·mənt]
(statistical mechanics)
Random movements of small particles suspended in a fluid, caused by the statistical pressure fluctuations over the particle.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
To return to the Brownian movements of Mikka: even purists would have to agree that, despite the double transfer, even Brownian movement (in the sense of Xenakis's instrumental music) has autonomy as a compositional method.
This evolution will show how this technique became autonomous, starting from its origin in the double transfer as described above: by a very few changes, the kind of "Brownian movement" used in Mikka will be completely transformed.
Xenakis is very clear in the preface of the score of N'Shima: "The melodic patterns of N'Shima are drawn from a computer-plotted graph as result of Brownian movement (random walk) theory that I introduced into sound synthesis with the computer in the pressure versus time domain." (16) Almost the whole piece--a relatively long one for Xenakis, about 17 minutes of music--is produced with such graphs.
In 1905, Albert Einstein published a pivotal monograph, The Theory of Brownian Movement. His book suggested that randomly moving water molecules striking a Brownian particle caused the particle's erratic movements, which lie at the heart of the diffusion process.
Examples would be the Appleton layer, Bell's palsy, Brewster's law, Brucellosis, Brownian movement, degrees Kelvin, Dewar flask, Graham's law, Higgs particle, Kerr effect, Liston splint, McLaggan diesel engine, McLaurin's theorem, Newland's law, Rankine cycle, Southern blotting method, and the Stirling engine.
That assumption is challenged by the new view of rectified Brownian movement.
Whereas the first two eras are named after historical figures (Party leaders Edward Gierek and Wojciech Jaruzelski) symbolic of Polish politics in the 1970s and eighties, the third, with its allusion to Brownian movements or heroin ("brown sugar"), refers to someone or something representing a totally different order.