(redirected from Caissons)
Also found in: Dictionary, Thesaurus, Financial.


(kā`sən, –sŏn) [Fr.,=big box], in engineering, a chamber, usually of steel but sometimes of wood or reinforced concrete, used in the construction of foundations or piers in or near a body of water. There are several types. The open caisson is a cylinder or box, open at the top and bottom, of size and shape to suit the projected foundation and with a cutting edge around the bottom. It is sunk by its own weight and by excavation, then filled with concrete. Pneumatic caissons are usually employed in riverbed work or where quicksand is present. In this type the cylinder or box has an airtight bulkhead high enough above the cutting edge to permit men to work underneath it. The air in the chamber beneath the bulkhead is kept under pressure great enough to prevent the entrance of water, while shafts through the bulkhead permit the passage of men, equipment, and excavated material between the bottom and the surface. At the top of each shaft is an air lockair lock,
compartment connecting two different environments, usually at different pressures, that enables personnel to transfer from one environment to the other. Space capsules have air locks to enable astronauts to move between the pressurized cabin and the near vacuum of
..... Click the link for more information.
 to permit communication with the outside without altering the air pressure in the working chamber. As the working chamber moves down, the caisson above the bulkhead and about the shafts is filled with concrete, and when a sufficient depth or bedrock is reached, the working chamber itself is filled, so that there is a solid block of concrete from base to top. Workers leaving a pneumatic caisson after hours of labor under high pressure are given special decompression treatment to accustom them to the lower atmospheric pressure and thus to prevent caisson disease (see decompression sicknessdecompression sickness,
physiological disorder caused by a rapid decrease in atmospheric pressure, resulting in the release of nitrogen bubbles into the body tissues. It is also known as caisson disease, altitude sickness, and the bends.
..... Click the link for more information.
). A type of caisson often called a camel is used to raise sunken vessels. It consists of a cylinder filled with water, which is sunk, attached to the vessel, and emptied by pump or compressed air, so that its buoyancy can assist in raising the vessel. Caissons are also sometimes used for closing the entrance to dry docks or as a substitute for gates in canal locks.


A large-diameter steel pipe used to buttress foundation sheet pilings until a slurry wall can be built.



a structure that forms a water-free working chamber under water or in water-saturated ground by forcing compressed air into the chamber.

Caissons are usually built on the surface and sunk into the ground as the earth is removed under the effect of their own weight and the weight of the superstructure. The caisson can be lowered from dry land, from an artificial or silted island, or from the surface of the water. The basic operation in lowering the caisson consists of dredging the soil and delivering it to the surface. Rocky or hard clay soils are removed by blasting or by pneumatic tools. The dredging of scourable sandy or clay soils can be done with hydraulic equipment. The soil is washed out with water jets and removed from the caisson water-jet elevators. The use of hydraulic equipment makes possible substantial reductions in the number of persons working in the caisson, decreases the danger of the work, lowers the consumption of compressed air, accelerates construction, and reduces costs.

A compressor station continuously supplies compressed air to the caisson, maintaining the required air pressure. Safety measures must be taken, according to the air pressure in the working chamber, to prevent the occurrence of caisson disease among the workers. The length of the working day is carefully regulated, as is the compression time (that is, the transition from atmospheric pressure to the working pressure) and the decompression time (the reverse process).

Caissons today are made from reinforced concrete. The bottom of each of the sidewalls (consoles) ends in a steel footing that cuts into the soil while the caisson is being lowered. There are shaft openings in the ceiling; above these are the shaft pipes themselves and an airlock device that provides for the delivery of men and materials from the compressed-air zone to the atmospheric-pressure zone and back. After the foot of the caisson has reached the planned level, the working chamber is completely or partially filled with concrete or sand. When the operating loads are small or when the foundation is strong and under little strain, the working chambers are left unfilled.

Caissons were once widely used in building bridge foundations. Today, however, they have for the most part been replaced by new types of deep supports and driven pilings. Caissons are used in sinking submersible structures into the ground; these are relatively small, deep underground structures, the major portion of which is erected earlier on the surface. The caisson method is used in building pumping stations, water intakes, tunnels, and deep foundation pits for industrial buildings. The method has certain drawbacks, including dangerous conditions, high costs, and the comparatively shallow depth of submersion. In a number of instances these drawbacks have limited its use.

A detachable caisson is sometimes used for underwater work that does not involve sinking the structure into the ground (chiefly repair and reconstruction work in hydraulic engineering construction). A detachable caisson is a metal or reinforced-concrete open-bottom box (an air bell) that is lowered to the bottom. Communication with the caisson is carried out through vertical shafts that rise above water level.

The device that partly removes the water from around the hull of a ship during repair or inspection is also called a caisson, in this instance a wooden or metal box whose inner side is shaped to fit the hull area to be drained. After the water has been pumped out of the caisson, the caisson is forced tight against the hull by the pressure of the surrounding water. The use of a caisson makes it unnecessary in many instances to bring the ship into dry dock.


Zingorenko, G. I., and N. A. Silin. Gidromekhanizatsiia kessonnykh rabot. Moscow, 1949.
Khalizev, E. P. Vybor optimal’nogo rezhima raboty gidromekhanizatsionnykh ustanovok ν kessonakh. Moscow, 1957.
Pravila bezopasnosti pri proizvodstve rabot pod szhatym vozdukhom (Kessonnye raboty), 2nd ed. Moscow, 1960.




a hollow, cylindrical shell (frequently circular) that is sunk into the earth. Caissons are used mainly for the installation of deep supports that transmit pressure to lower, stronger strata of the soil and for the construction of compartments that are buried in the earth. Caissons are mainly made from precast or cast reinforced concrete. The walls are vertical and smooth or stepped, with an inside taper toward the bottom, which facilitates sinking the caisson into the earth.

The soil within a caisson that is being sunk is removed by excavators, grab buckets, or water-jet pumps. When the planned level has been reached, the internal cavity of the caisson is completely filled with concrete (when erecting a support) or is partially filled to form a bottom resting on the soil and to seal off the underground compartment thus created, to prevent infiltration of water. The best practice is to sink caissons to depths of 20–25 m (especially in waterlogged soils). The diameter of a caisson can be up to 80 m. To provide rigidity in large caissons, the internal cavities are divided into sections by partitions.

Caissons are sunk in loose soils or sand by means of vibration equipment; in clayey soils, “thixotropic jackets” may be used. In this method a clay mortar is pumped in between the walls of the caisson and the surrounding soil; the mortar acts as a lubricant while the caisson is being sunk and subsequently acquires strength, particularly upon the addition of cement.

A shortcoming of a caisson is that it may deviate from the vertical while being sunk. In this case the soil is washed away from underneath on one side or extra loading is applied from the top.



(civil engineering)
A watertight, cylindrical or rectangular chamber used in underwater construction to protect workers from water pressure and soil collapse.
A float used to raise a sunken vessel.
A two-wheeled, horse-drawn vehicle used for transporting ammunition and other military equipment.


1. A watertight structure or chamber, within which work is carried on in building foundations or structures below water level.
2. A sunken panel, esp. in a vaulted ceiling or the inside of a cupola; a coffer.


1. a watertight chamber open at the bottom and containing air under pressure, used to carry out construction work under water
2. a similar unpressurized chamber
3. a watertight float filled with air, used to raise sunken ships
4. a watertight structure placed across the entrance of a basin, dry dock, etc., to exclude water from it
5. another name for coffer
References in periodicals archive ?
Caisson failures have been recorded as the cause of numerous shutdowns, with structural failures leading to dropped objects.
"We have developed our Active Caisson Management solution in response to industry demand for a joined-up approach to this costly problem and have already conducted several successful projects with key North Sea operators.
3 When upright, more caissons will be fixed to the side of the hull to stabilise it.
The mass of the building is supported by 421 concrete caissons that extend through the clays to indurated till or bedrock.
Electrical and telephone lines wouldn't allow a crane to reach over the house, so caissons had to be constructed on site.
His experience ranged from test boring inspector to design of 100-foot deep and 150-foot diameter sinking caissons. Hanson was a licensed professional engineer in nine states
When water is too deep or the wave is rough, gravity retaining structures using prefabricated reinforced concrete segments or caissons may be a better option.
A sculpted ceiling of glossy cherrywood caissons, suspended from the timber roof structure like some kind of geological formation, is calculated to enhance acoustic performance.
When the latter method is preferred (and it usually is), the caissons must be made of porous concrete.
Later they could stay underwater for extended periods in caissons or diving suits, but only at the cost of having the air they breathed compressed to the pressure of the surrounding water.
A slight lull over the winter has been replaced by a period of intense activity, with five concrete caissons arriving within three months, and continued work on both breakwaters, piling operations and dredging.