Carbon Fiber

(redirected from Carbon fibre)
Also found in: Dictionary, Wikipedia.

carbon fiber

[′kär·bən ‚fī·bər]
(materials)
Commercial material made by pyrolyzing any spun, felted, or woven raw material to a char at temperatures from 700 to 1800°C.
A filamentary form of carbon, usually with a diameter in the 6-10-micrometer range.

Carbon Fiber

 

a fiber consisting mainly of carbon. Carbon fibers are usually obtained by heat-treating synthetic chemical fibers or natural organic fibers in such a way that mainly carbon atoms remain in the fibrous material. If the treatment temperature is less than 900°C, the carbon fibers will contain 85–90 percent carbon; at 900°-1500°C the content will be 95–99 percent, and at 1500°-3000°C it will exceed 99 percent. In addition to ordinary organic fibers, which are most often viscose and polyacrylonitrile fibers, special fibers of phenolic resins, lignin, and coal-tar and petroleum pitches are used in producing carbon fibers.

Depending on the form of the starting material, carbon fibers can take the form of continuous or staple yarns, filaments, ribbons, felts, and fabrics. In addition, ordinary textile machinery can be used to make woven and unwoven materials from carbon fibers.

Carbon fibers have extremely high thermal stability. Upon heating to 1600°-2000°C in the absence of oxygen, the mechanical indexes of the fiber remain unchanged. This stability recommends carbon fibers for use in heat shields and as insulating material in high-temperature technology. The reinforced plastics made from carbon fibers are distinguished by their good ablation characteristics.

Carbon fibers, although resistant to corrosive chemical media, undergo oxidation upon heating in the presence of oxygen. The temperature ceiling for fibers used in an air medium is 300°-350°C. The application of a thin layer of carbides, especially SiC, or boron of nitride to the carbon fibers does much to correct this drawback. Owing to their high chemical stability, carbon fibers are used in the filtration of corrosive media, the purification of gases, and the manufacture of protective suits.

A change in the conditions of heat treatment can alter the electrophysical properties of the fibers; the volume electrical resistivity can range from 2 × 10–3 to 106 ohm-cm. Certain fibers can be used as electrical heating elements and in the production of thermocouples.

By the activation of carbon fibers, materials are obtained having larger active surfaces (300–1,000 m2/g). These materials are excellent sorbents. The application of catalysts to the fibers makes possible the creation of catalytic systems with highly developed surfaces.

Carbon fibers usually have strengths of the order of 0.5–1 giga-newton per sq m (GN/m2), equivalent to 50–100 kilograms-force per sq mm (kgf/mm2), and elastic moduli of 20–70 GN/m2(2,000–7,000 kgf/mm2). Fibers subjected to orientational elongation have strengths of 2.5–3.5 GN/m2 (250–350 kgf/mm2) and elastic moduli of 200–450 GN/m2 (20 × 103 –45 × 103 kgf/mm2). Owing to the low density (1.7–1.9 g/cm3), low, that is, in relation to the fibers’ strength and elastic modulus, the mechanical properties of carbon fibers are superior to all known heat-resistant fibrous materials. Structural carbon-fiber reinforced composites having polymeric binders are obtained from carbon fibers possessing high strength and high elastic moduli. Composite materials based on carbon fibers and ceramic binders, carbon fibers and a carbon matrix, and carbon fibers and metals have been developed that are capable of withstanding more rigorous temperature conditions than ordinary plastics.

REFERENCE

Konkin, A. A. Uglerodnye i drugie zharostoikie voloknistye materialy. Moscow, 1974.

A. A. KONKIN

References in periodicals archive ?
The yarns and fabrics are blended carbon/PET, manufactured from virgin recovered carbon fibre. These new materials have almost 100 per cent of the stiffness of virgin materials, but they can be offered at a lower cost than similar products currently available.
Carbon fiber producer Toho Tenax, the main organisation of theTeijin Group's carbon fibre business, resources a wide range of carbon fibre types for both dry fabric and prepreg use on the CSeries program.
The Dow Chemical Company (NYSE: DOW), through its wholly-owned subsidiary Dow Europe GmbH, and Aksa Akrilik Kimya Sanayii A.S (Aksa) (ISE: AKSA) today signed a definitive agreement to form a joint venture to manufacture and commercialise carbon fibre and derivatives.
SGL Automotive Carbon Fibers, a joint venture of SGL Group and BMW Group (Xetra: BMW), is opening a new carbon fibre manufacturing plant in Moses Lake, Washington.
SABIC will employ this technology to construct a carbon fibre plant in Saudi Arabia, to fulfil the demand for carbon fibre and composites in markets like alternative energy, transportation and infrastructure.
The Dow Chemical Company (NYSE:DOW), through its wholly-owned subsidiary Dow Europe GmbH, and Aksa Akrilik Kimya Sanayii A.S (Aksa) (ISE: AKSA), a producer of acrylic fibre, today announced a Memorandum of Understanding (MOU) with the intent to form a joint venture (JV) to manufacture and globally commercialize carbon fibre and derivatives.
SGL Automotive Carbon Fibers, a joint venture of BMW AG (Xetra: BMW) and SGL Group, has started construction of its carbon fibre manufacturing facility at Moses Lake, Washington.
The company has started the production of carbon fibre in 2008.
Bavarian Motor Works AG (BMW) (Xetra: BMW), a Germany-based automaker, is planning to use carbon fibre across its entire range.
Global Carbon Fiber Tape (Carbon Fibre Tape) Market Report 2019 explores future trends for supply, demand and market growth rate, market size, prices, trading, competition and value chain as well as Key Players of the industry's information with forecast from 2019 to 2024.
The model features a carbon fibre bonnet, a carbon fibre roof with a new design, carbon fibre front splitter, carbon fibre rear spoiler, carbon fibre rear diffuser, carbon fibre side mirrors and interiors with carbon fibre centre console, continuing with the carbon fibre door handle cover, Alcantara trim interior with contrast in red, an M2 CS badge, M Competition seats from the M4 CS and an Alcantara M Steering Wheel with red contrasts.
Song, "Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications," Express Polymer Letters, vol.