Cauchy residue theorem

Cauchy residue theorem

[kō·shē ′rez·ə‚dü ‚thir·əm]
(mathematics)
The theorem expressing a line integral around a closed curve of a function which is analytic in a simply connected domain containing the curve, except at a finite number of poles interior to the curve, as a sum of residues of the function at these poles.
Mentioned in ?
References in periodicals archive ?
We apply the Cauchy residue theorem as follows: Take a rectangle with vertices at s = c + it, - T < t < T, s = [sigma] + iT, - a < [sigma] < c, s = - a + it, - T < t < T and s = [sigma] - iT, - a < [sigma] < c, where T > 0 is to mean [T.