Conversion Technology

The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Conversion Technology

 

(in Russian, preobrazovatel’-naia tekhnikd), the branch of electrical engineering concerned with the development of methods and equipment for the conversion of electrical energy. The term also denotes the set of the corresponding conversion devices.

Such devices are of several types. Transformers change the magnitudes of alternating voltage and current. Rectifiers convert an alternating current into a direct or a unidirectional pulsed current. Inverters convert a direct or unidirectional pulsed current into an alternating current. Frequency changers convert an alternating current of one frequency into an alternating current of another frequency. Phase splitters change the number of AC phases. DC voltage regulators and converters change the magnitude of a DC voltage. Contactless switching devices are also included in this group.

Conversion devices are divided into rotary and static (electromagnetic and rectifier) types, depending on the basic elements of their power circuits. Rotary conversion devices include transformers and electromechanical frequency changers. Transformers are used in AC circuits when it is necessary to increase or decrease the voltage, to match the output of one system with the input of another, or to provide DC decoupling between electric circuits. Rotary converters, chiefly motor-generator units, are used mostly in self-contained electric power systems and in some industrial electric drives. Electromagnetic converters are seldom used, and then mostly as frequency dividers and multipliers. The basic element of a rectifier conversion device (RCD) is an electric valve rectifier. Because valve rectifiers have a small time lag, high efficiency, good service characteristics, low mass, and small size, wide use is made of them. Electronic (vacuum-tube) rectifiers are used in low- and medium-power high-voltage RCD’s. Ionic (gas-discharge and mercury-arc) rectifiers are used in RCD’s where the loading varies abruptly, in pulsed RCD’s, and in special types. Semiconductor rectifiers include transistors, semiconductor diodes, and thyristors. Because of their compactness, instantaneous readiness for service, high efficiency, simplicity of control, and long service life, they almost completely supplanted other rectifiers in RCD’s for mass applications by the mid 1970’s. In low-voltage RCD’s of low and medium power—that is, approximately 102 to 103 watts (W)—transistors operating in the switching mode are used; in high-power RCD’s (~ 105-108 W), semiconductor power diodes and thyristors are used. In addition to rectifiers with their cooling arrangements, an RCD has transformers, safety devices for overcurrents and voltage surges, rectifier control systems, rate-of-rise limiters for the voltage and current in the power circuits, switching devices, and ripple filters.

RCD’s are classified according to their mode of operation as having spontaneous or forced (triggered) switching. Spontaneous switching can be achieved in an RCD with either controlled or uncontrolled rectifiers. Forced switching is obtained, as a rule, in an RCD with controlled rectifiers. In both types of RCD a rectifier is shifted into the high-conductivity state (turned on) by

Figure 1. (a) Circuit of a semiconductor controlled rectifier, (b), (c), and (d) voltage diagrams: (Up) power-line voltage, (UL) voltage on the load, (Uav) average value of the rectified voltage, (RCD) rectifier conversion device, (R) controlled rectifier, (FSD) forced switching device, (RL) load

a control signal when suitable potentials are present on its power electrodes. It is shifted into the low-conductivity state (turned off) either as a result of lowered voltage from the power source (in an RCD with spontaneous switching) or of supplementary action by a switching device (in an RCD with forced switching).

The circuit of a very simple RCD—a rectifier—is shown in Figure 1,a. Phase control involves changing the moment when the controlled rectifier, which is connected in series with the load, is turned on; the average value of the rectified voltage applied to the load can thereby be varied (Figure 1,b). The average value of the rectified voltage can also be varied through pulse control, which involves changing the rate at which the control pulses are supplied (Figure 1,c). In an RCD with spontaneous switching, the rectifier is turned off when the current flowing through it is reduced to zero. In an RCD with forced switching, the rectifier can be turned off by the switching device at any moment; the curve of the variation in the voltage on the load is shown in Figure 1,d. This method of controlling the operating mode of the rectifier permits an increased power factor at the input of the RCD as compared to phase control. A ripple filter is generally used at the output of an RCD to reduce the pulsations of the rectified voltage. For this purpose, several RCD’s are used in parallel and are supplied with alternating voltages that are shifted in phase relative to one another.

In an RCD for frequency conversion (Figure 2,a), control pulses are supplied alternately to rectifiers R1 and R2 for the positive half-wave of the load current and to R3 and R4 for the negative half-wave of the load current at a frequency lower than the frequency of the power line in order to obtain (with spontaneous switching) the voltage that is shown in an idealized form in Figure 2,b. In an RCD with forced switching it is possible to obtain an alternating voltage whose frequency can be higher than that of the power line (Figure 2,c) and is limited only by the

Figure 2. (a) Circuit of a semiconductor rectifier frequency changer, (b) and (c) voltage diagrams: (T1) period of the power-line voltage, (T2) and (T) periods of the voltage on the load; the other symbols are as in Figure 1

Figure 3. (a) Circuit of a semiconductor rectifier DC regulator, (b) and (c) voltage diagrams: (T) repetition interval of the control pulses for turning on the rectifier, (t) duration of the rectifier’s on state; the other symbols are as in Figure 1

dynamic properties of the rectifiers. To change the average value of the output voltage in this case, either phase or. pulse control is used.

If an RCD is connected in a DC circuit and the duration of the on and off states of the power rectifier is varied through forced switching (Figure 3,a), the average voltage on the load can be varied by pulse-width (Figure 3,b) or pulse-frequency (Figure 3,c) regulation. Inversion, or the conversion of direct current into alternating current, can be effected by connecting two RCD’s together.

Both in the USSR and abroad, RCD’s are used in practically all fields of electric power engineering. For the DC transmission of electric power at voltages of 500 kilovolts or more, mercury-arc and semiconductor rectifiers and inverters are used that have a capacity of 100 megavolt-amperes (MVA) or more. The capacities of semiconductor rectifiers for supplying electrolytic baths reach 100 MVA. Mercury-arc rectifiers with capacities of up to 30 MVA are still found in electric drives for rolling and blooming mills, but since the early 1970’s they have been gradually supplanted by semiconductor rectifiers. The rectifying and rectifying-inverting devices used in electrified railroad transport have capacities of up to 10 MVA on the rolling stock and up to 15 MVA at power substations. Electric drives for machine tools and textile machinery use semiconductor rectifiers and frequency changers with capacities from 10 kilovolt-amperes (kVA) to 10 MVA. Semiconductor frequency changers with capacities of up to 1 MVA are used to supply electric induction furnaces. In the low-speed electric drives of shaft mills, both mercury-arc and semiconductor frequency changers with capacities of 10 or 15 MVA are used. The mercury-arc units, however, are being gradually replaced by semiconductor units.

REFERENCES

Rivkin, G. A. Preobrazovatel’nye ustroistva. Moscow, 1970.
Chizhenko, I. M., V. S. Rudenko, and V. I. Sen’ko. Osnovy preobrazovatel’noi tekhniki. Moscow, 1974.

IU. M. IN’KOV and A. A. SAKOVICH

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
References in periodicals archive ?
Selected for use at the upcoming 2019 World Rugby event, 2020 Tokyo Summer games, and new professional football leagues in Europe, FOR-A's FRC-9100 broadcast frame rate converters and FA-9600 dual-channel signal processors are gaining attention from broadcasters looking for image conversion technology at events.
Eni and NextChem, Maire Tecnimont's green chemistry subsidiary, have signed a partnership agreement to develop and implement a conversion technology, which uses high-temperature gasification to produce hydrogen and methanol from solid urban waste and non-recyclable plastic with minimal environmental impact, Trend reports citing Eni.
The company's adjusted first quarter 2019 results exclude a 13c per diluted share charge primarily related to a non-cash impairment of an investment in a waste conversion technology business.
The contract is for the basic engineering, technology licence and catalyst for an integrated Low Pressure Recovery (LPR) and Olefins Conversion Technology (OCT) unit at KIPIC's Petrochemical Refinery Integration Project (PRIZe) in Al Zour, Kuwait.
As part of the contract, McDermott will deliver basic engineering, technology licensing, and catalyst for an integrated low-pressure recovery (LPR) and olefins conversion technology (OCT) unit at the complex as part of the site's broader petrochemical refinery integration project, which will add a gasoline block, an aromatics block, OCT unit, polypropylene (PP) units, as well as associated utility and offsite installations to the existing refinery site, the service provider said.
EPC Power engineers and manufactures its commercial power conversion technology for use around the world.
Honda Motor (NYSE: HMC), a Japan-based automaker, is participating in a French smart-grid project that uses electric cars as storage batteries, providing proprietary power conversion technology in a market where solar and wind power generation is increasingly taking hold.
5 April 2017 - UK-based media group Dentsu Aegis Network, part of Dentsu, Inc., has acquired marketing conversion technology of US-based digital performance marketing solutions firm Leapfrog Online to grow market share of digital performance agency iProspect, the company said.
Compatible with all popular PC laptop brands, Dart's radical reduction in size is enabled by patented high- frequency power conversion technology first developed at MIT.
Ampt LLC, a global leader in power conversion technology, has installed its DC optimizers in a 33 MW solar photovoltaic system with Canadian Solar, Inc.
Shahid Rasheed Butt said that the government should adopt advanced coal conversion technology and try to use Thar coal.
Shahid Rasheed Butt said that the government should adopt advanced coal conversion technology and try to use Thar coal which will help cut fuel import bill, create thousands of jobs and achieve energy security.