harmonic oscillator

(redirected from Damped harmonic oscillator)
Also found in: Dictionary.

Harmonic oscillator

Any physical system that is bound to a position of stable equilibrium by a restoring force or torque proportional to the linear or angular displacement from this position. If such a body is disturbed from its equilibrium position and released, and if damping can be neglected, the resulting vibration will be simple harmonic motion, with no overtones. The frequency of vibration is the natural frequency of the oscillator, determined by its inertia (mass) and the stiffness of its restoring force.

The harmonic oscillator is not restricted to a mechanical system, but might, for example, be electric. Typical electronic oscillators, however, are only approximately harmonic.

If a harmonic oscillator, instead of vibrating freely, is driven by a periodic force, it will vibrate harmonically with the period of the force; initially the natural frequency will also be present, but any damping will eventually remove the natural motion. See Damping, Forced oscillation, Harmonic motion

In both quantum mechanics and classical mechanics, the harmonic oscillator is an important problem. It is one of the few rigorously soluble problems of quantum mechanics. The quantum-mechanical description of electromagnetic, electronic, mesonic, and other fields is usually carried out in terms of a (time) Fourier analysis. The individual Fourier components of noninteracting fields are independent harmonic oscillators. See Anharmonic oscillator

McGraw-Hill Concise Encyclopedia of Physics. © 2002 by The McGraw-Hill Companies, Inc.

harmonic oscillator

[här′män·ik ′äs·ə‚lād·ər]
(electronics)
(mechanics)
Any physical system that is bound to a position of stable equilibrium by a restoring force or torque proportional to the linear or angular displacement from this position.
(physics)
Anything which has equations of motion that are the same as the system in the mechanics definition. Also known as linear oscillator; simple oscillator.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
In the case [lambda] = -0.1, [mu] = 1, if m is smaller than 2n, it can be observed that the resulting fractional damped harmonic oscillator exhibits smaller amplitudes and the damping comes into effect more quickly (see Figure 3 (a)).
The solutions to damped harmonic oscillator (solid black line) and fractional damped harmonic oscillator (dashed, dotted and dash-dotted lines represent n = 20,10, 5 respectively) for [lambda] = -0.1, [mu] = 1, A = 1, B = 0 in (a) and [lambda] = - 1, [mu] = 1, A = 1, B = 0 in (b).