Monotonic Function

(redirected from Decreasing operator)

monotonic function

[¦män·ə¦tän·ik ′fəŋk·shən]

Monotonic Function


(or monotone function), a function whose increments Δf(x) = f(x′) − f(x) do not change sign when Δx = x′ − x > 0; that is, the increments are either always nonnegative or always nonpositive. Somewhat inaccurately, a monotonic function can be defined as a function that always varies in the same direction. Different types of monotonic functions are represented in Figure 1. For example, the function y = x3 is an increasing function. If a function f(x) has a derivative f′(x) that is nonnegative at every point and that vanishes only at a finite number of individual points, then f(x) is an increasing function. Similarly, if f′(x) ≤ 0 and vanishes only at a finite number of points, then f(x) is a decreasing function.

Figure 1

A monotonicity condition can hold either for all x or for x on a given interval. In the latter case, the function is said to be monotonic on this interval. For example, the function y = Monotonic Function increases on the interval [−1,0] and decreases on the interval [0, +1]. A monotonic function is one of the simplest classes of functions and is continually encountered in mathematical analysis and the theory of functions. If f(x) is a monotonic function, then the following limits exist for any X0:


References in periodicals archive ?
They can also automatically populate code information directly from an ERP system or other controlled database, thus decreasing operator interaction.
The former reduces engine noise, in turn decreasing operator fatigue and boosting productivity on jobsites in areas that have noise restrictions.
By reducing alarms, the solution helps operators notice the most important ones, thereby decreasing operator error.