Coulomb's law

(redirected from Electrostatic interaction)
Also found in: Dictionary, Thesaurus, Medical.

Coulomb's law

(ko͞o`lŏmz), in physics, law stating that the electrostatic force between two charged bodies is proportional to the product of the amount of charge on the bodies divided by the square of the distance between them. If the bodies are oppositely charged, one positive and one negative, they are attracted toward one another; if the bodies are similarly charged, both positive or both negative, the force between them is repulsive (see chargecharge,
property of matter that gives rise to all electrical phenomena (see electricity). The basic unit of charge, usually denoted by e, is that on the proton or the electron; that on the proton is designated as positive (+e
..... Click the link for more information.
). Coulomb's law applies exactly only when the charged bodies are much smaller than the distance separating them and therefore can be treated approximately as point charges. When combined with principles of quantum physics, Coulomb's law helps describe the forces that bind electrons to an atomic nucleus, that bind atoms together into molecules, and that hold together solids and liquids. The law was deduced in 1785 by C. A. de CoulombCoulomb, Charles Augustin de
, 1736–1806, French physicist. In 1789 he retired from his posts as military engineer and as superintendent of waters and fountains and devoted himself to continuing his scientific research.
..... Click the link for more information.
 from experimental measures of the forces between charged bodies; the experiments were made using his torsion balance.

Coulomb's law

For electrostatics, Coulomb's law states that the direct force F of point charge q1 on point charge q2, when the charges are separated by a distance r, is given by F = k0q1q2/r2, where k0 is a constant of proportionality whose value depends on the units used for measuring F, q, and r. It is the basic quantitative law of electrostatics. In the rationalized meter-kilogram-second (mks) system of units, k0 = 1/(4 πε0), where ε0 is called the permittivity of empty space and has the value 8.85 × 10-12 farad/m. Thus, Coulomb's law in the rationalized mks system is as in the equation below,

where q1 and q2 are expressed in coulombs, r is expressed in meters, and F is given in newtons. See Electrical units and standards

The direction of F is along the line of centers of the point charges q1 and q2, and is one of attraction if the charges are opposite in sign and one of repulsion if the charges have the same sign. For a statement of Coulomb's law as applied to point magnet poles.

Experiments have shown that the exponent of r in the equation is very accurately the number 2. Lord Rutherford's experiments, in which he scattered alpha particles by atomic nuclei, showed that the equation is valid for charged particles of nuclear dimensions down to separations of about 10-12 cm. Nuclear experiments have shown that the forces between charged particles do not obey the equation for separations smaller than this. See Electrostatics

Coulomb's Law


one of the fundamental laws of electrostatics; determines the force of interaction between two point electric charges at rest—that is, between two electrically charged bodies whose dimensions are small compared with the distance between them. It was established experimentally in 1785 by C. Coulomb using the torsion balance, which he invented.

According to Coulomb's law, two point charges interact with each other in a vacuum with a force F whose magnitude is proportional to the product of the charges e1 and e2 and inversely proportional to the square of the distance r between them:

Here k is a proportionality factor that depends on the system of units chosen: in the absolute (Gaussian) system of units (the cgs system), k = 1; in the International System of Units (SI), k = l/47T€o, where eo is the electric constant. The force F is directed along a straight line connecting the charges and is attractive for unlike charges (F < 0) and repulsive for like charges (F > 0).

If the interacting charges are situated in a homogeneous di-electric with dielectric constant €, the force of interaction is then reduced by a factor of ∊:

Coulomb's law is one of the experimental foundations of classical electrodynamics; its generalization leads, among other things, to Gauss' theorem.

The law that defines the force of interaction between two magnetic poles is also called Coulomb's law:

Here f is a proportionality factor (in the general case it does not coincide with k in the absolute system of units f = 1), m1 and m2 are magnetic charges, and JLI is the magnetic permeability of the medium that surrounds the interacting poles. In a vacuum F = fm1m2/r2.


Tamm, I. E. Osnovy teorii elektrichestva, 7th ed. Moscow, 1957. Chapter
1, sec. 21; ch. 2, sec. 23.


Coulomb's law

[′kü′lämz ‚lȯ]
The law that the attraction or repulsion between two electric charges acts along the line between them, is proportional to the product of their magnitudes, and is inversely proportional to the square of the distance between them. Also known as law of electrostatic attraction.
References in periodicals archive ?
The energy of molecular mechanics was composed by electrostatic interactions and Van der Waals interactions.
3]Na content, more positively charged CV molecules can enter into the hydrogels due to strong electrostatic interactions.
Most of the results discussed in this work were obtained for colloidal dispersions stabilized by non-electrostatic means, although we shall briefly comment on the consequences of adding a simplified model of electrostatic interactions to the stabilizing mechanism proposed here when discussing the final figure in this article.
Thus the binding between Pcyn-NaHep is governed by strong electrostatic interaction reinforced by hydrophobic interaction.
The Electrostatic Interaction between Interfacial Colloidal Particles," J.
The increments of the desorption of pre-adsorbed Zn(II) increased with the rise in pH in the 3 variable charge soils, which suggested that the rise in pH favoured the electrostatic interaction between Zn(II) and soil surface induced by arsenate.
Electrostatic interactions alone cannot fully explain recovery of the hBD signal, since asialylation of saliva or use of other divalent cations other than calcium does not completely unmask the hBD signal in our ELISA--near-complete recovery of signal was obtained only with calcium.
a slight negative electrostatic interaction in the latter points to the hydrogen bond.
ground] is set up for a given value of the total angular momentum and parity and includes electrostatic interactions V(R) (the adiabatic Born-Oppenheimer potentials), the mechanical rotation operator [l.
41) and/or filler-polymer electrostatic interaction (ref.
The strong electrostatic interaction between opposite charges of polymer solutions with crosslinking by addition of Ca[Cl.
Small and uniform size of nano-particle gives the cohesive strength, and also opposite charge gives the tight particle packing as a cause of the electrostatic interaction.

Full browser ?