periodic table

(redirected from Element Symbol)
Also found in: Dictionary, Thesaurus, Medical.

periodic table

periodic table, chart of the elements arranged according to the periodic law discovered by Dmitri I. Mendeleev and revised by Henry G. J. Moseley. In the periodic table the elements are arranged in columns and rows according to increasing atomic number (see the table entitled Periodic Table).

There are 18 vertical columns, or groups, in the standard periodic table. At present, there are three versions of the periodic table, each with its own unique column headings, in wide use. The three formats are the old International Union of Pure and Applied Chemistry (IUPAC) table, the Chemical Abstract Service (CAS) table, and the new IUPAC table. The old IUPAC system labeled columns with Roman numerals followed by either the letter A or B. Columns 1 through 7 were numbered IA through VIIA, columns 8 through 10 were labeled VIIIA, columns 11 through 17 were numbered IB through VIIB and column 18 was numbered VIII. The CAS system also used Roman numerals followed by an A or B. This method, however, labeled columns 1 and 2 as IA and IIA, columns 3 through 7 as IIIB through VIB, column 8 through 10 as VIII, columns 11 and 12 as IB and IIB and columns 13 through 18 as IIIA through VIIIA. However, in the old IUPAC system the letters A and B were designated to the left and right part of the table, while in the CAS system the letters A and B were designated to the main group elements and transition elements respectively. (The preparer of the table arbitrarily could use either an upper-or lower-case letter A or B, adding to the confusion.) Further, the old IUPAC system was more frequently used in Europe while the CAS system was most common in America. In the new IUPAC system, columns are numbered with Arabic numerals from 1 to 18. These group numbers correspond to the number of s, p, and d orbital electrons added since the last noble gas element (in column 18). This is in keeping with current interpretations of the periodic law which holds that the elements in a group have similar configurations of the outermost electron shells of their atoms. Since most chemical properties result from outer electron interactions, this tends to explain why elements in the same group exhibit similar physical and chemical properties. Unfortunately, the system fails for the elements in the first 3 periods (or rows; see below). For example, aluminum, in the column numbered 13, has only 3 s, p, and d orbital electrons. Nevertheless, the American Chemical Society has adopted the new IUPAC system.

The horizontal rows of the table are called periods. The elements of a period are characterized by the fact that they have the same number of electron shells; the number of electrons in these shells, which equals the element's atomic number, increases from left to right within each period. In each period the lighter metals appear on the left, the heavier metals in the center, and the nonmetals on the right. Elements on the borderline between metals and nonmetals are called metalloids.

Group 1 (with one valence electron) and Group 2 (with two valence electrons) are called the alkali metals and the alkaline-earth metals, respectively. Two series of elements branch off from Group 3, which contains the transition elements, or transition metals; elements 57 to 71 are called the lanthanide series, or rare earths, and elements 89 to 103 are called the actinide series, or radioactive rare earths; a third set, the superactinide series (elements 122–153), is predicted to fall outside the main body of the table, but none of these has yet been synthesized or isolated. The nonmetals in Group 17 (with seven valence electrons) are called the halogens. The elements grouped in the final column (Group 18) have no valence electrons and are called the inert gases, or noble gases, because they react chemically only with extreme difficulty.

In the accompanying table, which is a relatively simple type of periodic table, each position gives the name and chemical symbol for the element assigned to that position; its atomic number; its atomic weight (the weighted average of the masses of its stable isotopes, based on a scale in which carbon-12 has a mass of 12); and its electron configuration, i.e., the distribution of its electrons by shells. Larger and more complicated periodic tables may also include the following information for each element: atomic diameter or radius; common valence numbers or oxidation states; melting point; boiling point; density; specific heat; Young's modulus; the quantum states of its valence electrons; type of crystal form; stable and radioactive isotopes; and type of magnetism exhibited by the element (paramagnetism or diamagnetism).


See P. W. Atkins, The Periodic Kingdom: A Journey into the Land of Chemical Elements (1997).

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.

periodic table

[¦pir·ē¦äd·ik ′tā·bəl]
A table of the elements, written in sequence in the order of atomic number or atomic weight and arranged in horizontal rows (periods) and vertical columns (groups) to illustrate the occurrence of similarities in the properties of the elements as a periodic function of the sequence.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.

periodic table

a table of the elements, arranged in order of increasing atomic number, based on the periodic law. Elements having similar chemical properties and electronic structures appear in vertical columns (groups)
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005

periodic table

A list of all chemical elements known to mankind sorted by the number of protons they contain within the atom. As of 2021, there are 118 elements starting with hydrogen, which has one proton. The first 94 are found in nature, while the remaining are synthesized in a lab.

What's Periodic About It?
Periodicity is a chemistry term that refers to the behavior of the elements based on the number of protons in the atom. For the world at large, an "element table" makes more sense. See atom.
Copyright © 1981-2019 by The Computer Language Company Inc. All Rights reserved. THIS DEFINITION IS FOR PERSONAL USE ONLY. All other reproduction is strictly prohibited without permission from the publisher.
References in periodicals archive ?
Thepreviously mentioned NeON and XeNON are also examples of nonmetal wordswhich can be produced entirely with nonmetal element symbols.
302--Richard Lederer omitted SiLvEr from the list of elements which can be spelled from element symbols. Lv is the symbol for Livermorium, element 116.
Others papers have offered more transadditions (Francis, 2006a), old names for some of the elements, elements in US placenames, and words composed exclusively of the element symbols, such as CoAgULaTe.
Specifically, what five-letter words correspond to element symbols with the lowest and highest atomic numbers in the atomic number range 10000-99999?
Later articles have offered more extensive transpositions, trnsadditions, old names for some of the elements, elements in US placenames, and words composed solely of the element symbols, such as CoAgULaTe.
Maureen Van Ackooy, this Teacher's Edition's contributor, suggests: Try this activity that stretches the imagination, increases vocabulary, and familiarizes your students with the element symbols. Using the periodic table on p.