Elliptic Function


Also found in: Dictionary, Wikipedia.
Related to Elliptic Function: Theta function, Elliptic integrals

elliptic function

[ə′lip·tik ′fəŋk·shən]
(mathematics)
An inverse function of an elliptic integral; alternatively, a doubly periodic, meromorphic function of a complex variable.

Elliptic Function

 

any of various functions associated with the inversion of elliptic integrals. Elliptic functions are used in many branches of mathematics and mechanics in both theoretical studies and numerical calculations.

The inverse of the integral

is the trigonometric function u = sin x. Similarly, the inversion of normal elliptic integrals of the first kind

(where z = sin φ and k is the modulus of the elliptic integral) gives rise to the functions φ = am z and ω = sn z = sin (am z). The function am z, the amplitude of z, is not an elliptic function.

Figure 1

The elliptic sine, sn z, is the sine of the amplitude. The functions en z (the cosine of the amplitude) and dn z (the delta of the amplitude) are given by the formulas

The functions sn z, en z, and dn z are called Jacobian elliptic functions. The following relation holds:

sn2z + cn2z = k2 sn2z + dn2z = 1

Figure 1 shows the graphs of the Jacobian elliptic functions for real x and 0 < k < 1;

is the complete normal elliptic integral of the first kind, and 4K is a primitive period of the elliptic function sn z. In contrast to the singly periodic function sin x, the function sn z is a doubly periodic function. Its second primitive period is 2iK′, where

and Elliptic Function is the complementary modulus. The periods, zeros, and poles of the Jacobian elliptic functions are given in Table 1, where m and n are any integers.

Table 1. Properties of Jacobian elliptic functions
FunctionPeriodsZerosPoles
sn z4Km + 2iK′n2mk + 2iK′n2mK + (2n + 1)iK
cn z4K + (2K + 2iK′)n(2m + 1)K + 2iK′n2mK + (2n + 1)ik
dn z2Km + 4iK′n(2m + 1)K + (2n + 1)iK2mK + (2n + 1 )iK

The Weierstrassian elliptic function & (x) may be defined as the inverse of Weierstrass’ normal elliptic integral of the first kind, which has the form

where the parameters g2 and g3 are called the invariants of &(x). Here it is assumed that the zeros e1, e2, and e3 of the polynomial 4t3g2tg3 differ from each other; if they did not differ, integral (*) could be expressed in terms of elementary functions. The relations between & (x) and the Jacobian elliptic functions are given by the following equations:

Any meromorphic doubly periodic function f(z) is an elliptic function. The ratio of the two periods ω1 and ω2 is imaginary. We thus have f(z + mw1, + nw2) = f(z) whenm m, n = 0, ±1, ±2, . . . and 1m (ω12) ≠ 0. Sigma functions and theta functions are used to construct elliptic functions and to carry out numerical calculations.

The study of elliptic functions was preceded by the investigation of elliptic integrals; a systematic exposition of the theory of such integrals was given by A. Legendre. The founders of the theory of elliptic functions were N. Abel (1827) and K. Jacobi (1829). Jacobi dealt extensively with the theory of the elliptic functions that now bear his name. In 1847, J. Liouville published a discussion of the foundations of the general theory of elliptic functions, considered as meromorphic doubly periodic functions. A representation of elliptic functions in terms of the &-function and the theta and sigma functions was given by K. Weierstrass in the 1840’s (the theta and sigma functions are not elliptic functions).

REFERENCES

Markushevich, A. I. Teoriia analitkheskikh funklsii, 2nd ed., vol. 2. Moscow, 1968.
Hurwitz, A., and R. Courant. Teoriia funklsii. Moscow, 1968. (Translated from German.)
Whittaker, E. T., and G. N. Watson. Kurs sovremennogo analiza, 2nd ed., part 2. Moscow, 1963. (Translated from English.)
Bateman, H., and A. Erdelyi. Vysshie Iranstsendenlnye funklsii: Ellipticheskie i avtomorfnye funklsii: Funklsii Lame i Mat’e. Moscow, 1967. (Translated from English.)
References in periodicals archive ?
Xia, "Variable-coefficient Jacobi elliptic function expansion method for (2+ 1)-dimensional Nizhnik-Novikov-Vesselov equations," Applied Mathematics and Computation, vol.
i](z|[tau]), we can readily verify that f(z) is an elliptic function with periods [pi] and [pi][tau].
It would achieve one type of frequency response only, which is either elliptic function or Chebyshev's.
A miniaturized waveguide low-pass filter with an elliptic function response for Ku-band VSAT transceiver is presented in this paper, as shown in Fig.
The close connection between q-calculus on the one hand, and elliptic functions and theta functions on the other hand will be shown.
When designing a filter, including a LPF, an elliptic function type of slope in the transition from passband to stopband is desirable.
Various methods have been used to handle nonlinear partial differential equations, such as the Hirota bilinear method [1], inverse scattering method [2,3] the Backlund transformation method [4], subequation method [5-7], F-expansion method [8-10], sine-cosine method [11,12], sech-tanh method [13,14], Exp-function method [15,16], and Jacobi elliptic function method [17-19].
Since the proposed quasi-elliptic function LPF given in Figure 1(b) does not belong to a classic elliptic function LPF, its lowpass prototype cannot be found directly.
Several methods have been presented to obtain new exact solutions for many nonlinear evolution equations such that the homogeneous balance method [15], the tanh-function method [3], the algebraic method [4], the Hirota bilinear method [8], [9], the F-function expansion method [16], [17], the inverse scattering transform [1], the exp-function expansion method [7], the Jacobi elliptic function expansion [122], [19], the Backlund transform [13], [14], the sub-ODE method [11], the original (G'/G)-expansion method [18], the improved (G'/G)-expansion method [5], the generalized (G'/G)-expansion method [10], the extended (G'/G)-expansion method [6], the modified (G'/G)-expansion method [2] and so on.
Resonators with high unloaded Qs and an elliptic function response filter must be used to satisfy the loss and high rejection requirements.

Full browser ?