Also found in: Dictionary, Acronyms, Wikipedia.
Related to Endomorphism: Epimorphism


A function from a set with some structure (such as a group, ring, vector space, or topological space) to itself which preserves this structure.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.



a mapping of a set into itself in which the algebraic operations and relations defined on the set are preserved. For example, the mapping x → 2x is an endomorphism of an additive group of whole numbers, such that 2(x + y) = 2x + 2y.

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
References in periodicals archive ?
By an endomorphism f: X [right arrow] X, we mean a morphism from a projective variety X to itself.
It is not difficult to check that the endomorphism [End.sub.k](H, [alpha]) in [??]([M.sub.k]) forms a monoidal Hom-algebra with Hom-multiplication convolution *, twisting map id and unit [eta][epsilon].
Conversely, define an endomorphism D of A by D(x) = x, D(y) = -y, [for all]x [member of] B, y [member of] C.
We remark that if A is the usual tangent bundle of N then (1.24) - (1.26) reduce to the formulae (1.7) - (1.9) since [rho] is the Kronecker endomorphism (1.17).
In our approach, we do not consider any possible mixing endomorphism. Contrary to existing methods we fix a surjective transformation 9.
Recall that any endomorphism of f of H has a matrix representation A = ([a.sub.ij]) [member of] [Z.sup.nxn], where [mathematical expression not reproducible] for i > j.
If G = G1 = G2 then the homomorphism is called an endomorphism and the isomorphism is called an automorphism.
One can show that [[kappa].sup.-1.sub.h] is the norm of the H-orthogonal projection onto [V.sub.h] viewed as an endomorphism on V, and therefore [[kappa].sub.h] is bounded form below for some commonly used finite element spaces [3, Lemma 6.2].
where [mathematical expression not reproducible], B(Y) = A(QY) and Q is the symmetric endomorphism of the tangent space at a point corresponding to the Ricci tensor S
An almost Hermitian manifold ([bar.M], g, J) is a manifold endowed with an almost complex structure J, that is, compatible with the metric g, that is, an endomorphism J: T[bar.M] [right arrow] T[bar.M] such that [J.sup.2.sub.P] = -Id for every p [epsilon] [bar.M] and g(JX, JY) = g(X,Y).