Fortran
(redirected from F2008)Also found in: Dictionary, Thesaurus.
programming language
Development of Low-Level Languages
All computers operate by following machine language programs, a long sequence of instructions called machine code that is addressed to the hardware of the computer and is written in binary notation (see numeration), which uses only the digits 1 and 0. First-generation languages, called machine languages, required the writing of long strings of binary numbers to represent such operations as “add,” “subtract,” “and compare.” Later improvements allowed octal, decimal, or hexadecimal representation of the binary strings.
Because writing programs in machine language is impractical (it is tedious and error prone), symbolic, or assembly, languages—second-generation languages—were introduced in the early 1950s. They use simple mnemonics such as A for “add” or M for “multiply,” which are translated into machine language by a computer program called an assembler. The assembler then turns that program into a machine language program. An extension of such a language is the macro instruction, a mnemonic (such as “READ”) for which the assembler substitutes a series of simpler mnemonics. The resulting machine language programs, however, are specific to one type of computer and will usually not run on a computer with a different type of central processing unit (CPU).
Evolution of High-Level Languages
The lack of portability between different computers led to the development of high-level languages—so called because they permitted a programmer to ignore many low-level details of the computer's hardware. Further, it was recognized that the closer the syntax, rules, and mnemonics of the programming language could be to “natural language” the less likely it became that the programmer would inadvertently introduce errors (called “bugs”) into the program. Hence, in the mid-1950s a third generation of languages came into use. These algorithmic, or procedural, languages are designed for solving a particular type of problem. Unlike machine or symbolic languages, they vary little between computers. They must be translated into machine code by a program called a compiler or interpreter.
Early computers were used almost exclusively by scientists, and the first high-level language, Fortran [Formula translation], was developed (1953–57) for scientific and engineering applications by John Backus at the IBM Corp. A program that handled recursive algorithms better, LISP [LISt Processing], was developed by John McCarthy at the Massachusetts Institute of Technology in the early 1950s; implemented in 1959, it has become the standard language for the artificial intelligence community. COBOL [COmmon Business Oriented Language], the first language intended for commercial applications, is still widely used; it was developed by a committee of computer manufacturers and users under the leadership of Grace Hopper, a U.S. Navy programmer, in 1959. ALGOL [ALGOrithmic Language], developed in Europe about 1958, is used primarily in mathematics and science, as is APL [A Programming Language], published in the United States in 1962 by Kenneth Iverson. PL/1 [Programming Language 1], developed in the late 1960s by the IBM Corp., and ADA [for Ada Lovelace], developed in 1981 by the U.S. Dept. of Defense, are designed for both business and scientific use.
BASIC [Beginner's All-purpose Symbolic Instruction Code] was developed by two Dartmouth College professors, John Kemeny and Thomas Kurtz, as a teaching tool for undergraduates (1966); it subsequently became the primary language of the personal computer revolution. In 1971, Swiss professor Nicholas Wirth developed a more structured language for teaching that he named Pascal (for French mathematician Blaise Pascal, who built the first successful mechanical calculator). Modula 2, a Pascallike language for commercial and mathematical applications, was introduced by Wirth in 1982. Ten years before that, to implement the UNIX operating system, Dennis Ritchie of Bell Laboratories produced a language that he called C; along with its extensions, called C++, developed by Bjarne Stroustrup of Bell Laboratories, it has perhaps become the most widely used general-purpose language among professional programmers because of its ability to deal with the rigors of object-oriented programming. Java is an object-oriented language similar to C++ but simplified to eliminate features that are prone to programming errors. Java was developed specifically as a network-oriented language, for writing programs that can be safely downloaded through the Internet and immediately run without fear of computer viruses. Using small Java programs called applets, World Wide Web pages can be developed that include a full range of multimedia functions.
Fourth-generation languages are nonprocedural—they specify what is to be accomplished without describing how. The first one, FORTH, developed in 1970 by American astronomer Charles Moore, is used in scientific and industrial control applications. Most fourth-generation languages are written for specific purposes. Fifth-generation languages, which are still in their 06/98infancy, are an outgrowth of artificial intelligence research. PROLOG [PROgramming LOGic], developed by French computer scientist Alain Colmerauer and logician Philippe Roussel in the early 1970s, is useful for programming logical processes and making deductions automatically.
Many other languages have been designed to meet specialized needs. GPSS [General Purpose System Simulator] is used for modeling physical and environmental events, and SNOBOL [String-Oriented Symbolic Language] is designed for pattern matching and list processing. LOGO, a version of LISP, was developed in the 1960s to help children learn about computers. PILOT [Programmed Instruction Learning, Or Testing] is used in writing instructional software, and Occam is a nonsequential language that optimizes the execution of a program's instructions in parallel-processing systems.
There are also procedural languages that operate solely within a larger program to customize it to a user's particular needs. These include the programming languages of several database and statistical programs, the scripting languages of communications programs, and the macro languages of word-processing programs.
Compilers and Interpreters
Bibliography
See R. Cezzar, A Guide to Programming Languages: Overview and Comparison (1995), T. W. Pratt and M. V. Zelkowitz, Programming Languages: Design and Implementation (3d ed. 1996); C. Ghezzi and M. Jazayem, Programming Language Concepts (3d ed. 1997); R. W. Sebasta, Concepts of Programming Languages (4th ed. 1998).
Fortran
a programming language; more precisely, a family of such languages that evolved from the original version developed in 1957 in the USA under the supervision of J. W. Backus. The name derives from “formula translation,” referring to the translation of programs written in FORTRAN into machine language. FORTRAN contains statements for assignment, conditions, cyclic operation, subroutines, storage allocation, and real and complex variables, which may have logical, integer, real, or complex values; it also includes highly developed statements for input-output. FORTRAN is the most widely used programming language for scientific and engineering calculations. The language’s specifications are fixed in several national and international standards.
REFERENCES
Pervin, Iu. A. Osnovy FORTRANa, Moscow, 1972.Germain, C. Programmirovanie na IBM/360, 2nd ed. Moscow, 1973. (Translated from English.)
Fortran (programming textbook). Kiev, 1976.
American Standard FORTRAN: Approved March 7, 1966. New York, 1966.
FORTRAN
[′fȯr‚tran]Fortran
(language)There have been a great many versions.
The name is often written "FORTRAN", harking back to the days before computers were taught about lower case, but ANSI decreed, in about 1985 via the ANSI FORTRAN Technical Committee TC, that it should be "Fortran".
See also: Fortrash.
FORTRAN
(FORmula TRANslator) The first high-level programming language and compiler, developed in 1954 by IBM. It was originally designed to express mathematical formulas, and although it has been used for business applications, it is primarily used for scientific, engineering and mathematical problems. FORTRAN IV is an ANSI standard, but FORTRAN V has various proprietary versions. The following FORTRAN example converts Fahrenheit to Celsius:write(6,*) 'Enter Fahrenheit ' read(5,*) XFAHR XCENT = (XFAHR - 32) * 5 / 9 write(6,*) 'Celsius is ', XCENT stop end