Geothermal power


Also found in: Dictionary, Thesaurus, Wikipedia.

Geothermal power

Thermal or electrical power produced from the thermal energy contained in the Earth (geothermal energy). Use of geothermal energy is based thermodynamically on the temperature difference between a mass of subsurface rock and water and a mass of water or air at the Earth's surface. This temperature difference allows production of thermal energy that can be either used directly or converted to mechanical or electrical energy.

Commercial exploration and development of geothermal energy to date have focused on natural geothermal reservoirs—volumes of rock at high temperatures (up to 662°F or 350°C) and with both high porosity (pore space, usually filled with water) and high permeability (ability to transmit fluid). The thermal energy is tapped by drilling wells into the reservoirs. The thermal energy in the rock is transferred by conduction to the fluid, which subsequently flows to the well and then to the Earth's surface.

There are several types of natural geothermal reservoirs. All the reservoirs developed to date for electrical energy are termed hydrothermal convection systems and are characterized by circulation of meteoric (surface) water to depth. The driving force of the convection systems is gravity, effective because of the density difference between cold, downward-moving, recharge water and heated, upward-moving, thermal water. A hydrothermal convection system can be driven either by an underlying young igneous intrusion or by merely deep circulation of water along faults and fractures. Depending on the physical state of the pore fluid, there are two kinds of hydrothermal convection systems: liquid-dominated, in which all the pores and fractures are filled with liquid water that exists at temperatures well above boiling at atmospheric pressure, owing to the pressure of overlying water; and vapor-dominated, in which the larger pores and fractures are filled with steam. Liquid-dominated reservoirs produce either water or a mixture of water and steam, whereas vapor-dominated reservoirs produce only steam, in most cases superheated.

Although geothermal energy is present everywhere beneath the Earth's surface, its use is possible only when certain conditions are met: (1) The energy must be accessible to drilling, usually at depths of less than 2 mi (3 km) but possibly at depths of 4 mi (6–7 km) in particularly favorable environments (such as in the northern Gulf of Mexico Basin of the United States). (2) Pending demonstration of the technology and economics for fracturing and producing energy from rock of low permeability, the reservoir porosity and permeability must be sufficiently high to allow production of large quantities of thermal water. (3) Since a major cost in geothermal development is drilling and since costs per meter increase with increasing depth, the shallower the concentration of geothermal energy the better. (4) Geothermal fluids can be transported economically by pipeline on the Earth's surface only a few tens of kilometers, and thus any generating or direct-use facility must be located at or near the geothermal anomaly.

Equally important worldwide is the direct use of geothermal energy, often at reservoir temperatures less than 212°F (100°C). Geothermal energy is used directly in a number of ways: to heat buildings (individual houses, apartment complexes, and even whole communities); to cool buildings (using lithium bromide absorption units); to heat greenhouses and soil; and to provide hot or warm water for domestic use, for product processing (for example, the production of paper), for the culture of shellfish and fish, for swimming pools, and for therapeutic (healing) purposes.

The use of geothermal energy for electric power generation has become widespread because of several factors. Countries where geothermal resources are prevalent have desired to develop their own resources in contrast to importing fuel for power generation. In countries where many resource alternatives are available for power generation, including geothermal, geothermal has been a preferred resource because it cannot be transported for sale, and the use of geothermal energy enables fossil fuels to be used for higher and better purposes than power generation. Also, geothermal steam has become an attractive power generation alternative because of environmental benefits and because the unit sizes are small (normally less than 100 MW). Moreover, geothermal plants can be built much more rapidly than plants using fossil fuel and nuclear resources, which, for economic purposes, have to be very large in size. Electrical utility systems are also more reliable if their power sources are not concentrated in a small number of large units.

The most common process is the steam flash process, which incorporates steam separators to take the steam from a flashing geothermal well and passes the steam through a turbine that drives an electric generator. A more efficient utilization of the resource can be obtained by using the binary process on resources with a temperature less than 360°F (180°C). This process is normally used when wells are pumped. The pressurized geothermal brine yields its heat energy to a second fluid in heat exchangers and is reinjected into the reservoir. The second fluid (commonly referred to as the power fluid) has a lower boiling temperature than the geothermal brine and therefore becomes a vapor on the exit of the heat exchangers. It is separately pumped as a liquid before going through the heat exchangers. The vaporized, high-pressure gas then passes through a turbine that drives an electric generator. See Electric power generation

References in periodicals archive ?
While hydro geothermal power has the smallest land use footprint of any renewable power (an average of 4.5 Acres/MW or less than 10% of solar power), True Geothermal has less than half the footprint of hydro geothermal.
Marubeni Corporation is reportedly the main EPC contractor of the Olkaria I geothermal power station project, which owned by Kenya Electricity Generating Company.
Receipt of the new order constitutes an epoch-making milestone in MHPS' servicing of geothermal power plants.
The focus of development is in Ol Karia and Menengai sites where there lies much potential too, said GAK chairman Abel Rotich.Mr Rotich said the countrys current geothermal power production is at 613MW, a figure much lower than what is targeted.
The Government of Kenya is also putting efforts into creating an enabling environment to enhance investment flows from private investors into the energy sector through the implementation of competitive tender processes in an attempt to lower the unit costs of geothermal power generation while lowering the costs of doing business and thus improving Kenya's competitiveness in the region.
He explained that Iranian experts have identified three proper sites, including Meshkinshahr, Damavand and Sistan and Balouchestan, for the construction of geothermal power plants.
Sinan Ak, CEO of Zorlu Energy Group, said: "The first unit of the K?z?ldere III geothermal power plant will produce 720 million kilowatt-hours of electricity per year.
The average solar power absorbed and emitted by the Earth is 1.2 * 1017 watts, while the average geothermal power of the Earth is 4.4 * 1013 watts, less than 4 parts per 10,000 of the sun's average.
The report provides in depth analysis on global renewable power market and global geothermal power market with forecasts up to 2030.
The report analyses global renewable power market, global geothermal power market, Mexico power market, Mexico renewable power market and Mexico geothermal market.
Iran is building the Middle East's first geothermal power plant at the foot of an inactive volcano as the country is racing to meet a runaway demand for electricity.
It is organized into three parts: Part one focuses on a overview of geothermal heat pump systems and the advantages and disadvantages for the homeowner; Part two describes the technical aspects of geothermal power, such as the flow of the heat from the ground to the house and the Laws of Thermodynamics; and Part three describes the global marketplace for this type of energy.

Full browser ?