# Hilbert Space

Also found in: Dictionary, Thesaurus, Wikipedia.
Related to Hilbert Space: vector space, Banach space

## Hilbert space

[′hil·bərt ¦spās]
(mathematics)
A Banach space which also is an inner-product space with the inner product of a vector with itself being the same as the square of the norm of the vector.

## Hilbert Space

a mathematical concept extending Euclidean space to one of infinite dimensions. The concept arose at the turn of the 20th century in the form of a natural logical conclusion from the papers of the German mathematician D. Hilbert as a result of the generalization of the facts and methods related to the expansion of functions into orthogonal series and to the study of integral equations. Developing gradually, the concept of Hilbert space found increasingly wider applications in various branches of mathematics and theoretical physics. The concept is one of the most important in mathematics.

Originally, Hilbert space denoted the space of sequences with the converging series of squares (the so-called l2 space). The elements (vectors) of such a space are the infinite numerical sequences

x = (x1, x2, … , xn, …)

such that the series x12 + x22 + … + xn2 + … converges. The sum of the two vectors x + y and the vector λx, where λ is a real number, are determined naturally:

x + y = (x1 + y1, …, xn + yn, …)

λx = (λx1, λx2, … , λxn, …)

For any vectors x, y ∈ l2, the equation

(x, y) = x1y1 + x2y2 + … + xn yn + … )

determines their scalar product, and the length (norm) of vector x is understood to mean the nonnegative number The scalar product is always finite and satisfies the inequality │ (x, y) │ ≤ ║ x ║ ║ y ║. The sequence of vectors xn is said to be converging to vector x if ║ xn − x ║ → 0 as n → ∞. Many of the definitions and facts concerning the theory of finite-dimensional Euclidean spaces also apply to Hilbert space. For example, the equation where 0 ≤ϕ ≤ π, determines the angle between vectors x and y. Two vectors x and y are said to be orthogonal if (x, y) = 0. The l2 space is complete: every fundamental Cauchy sequence of the elements of this space (that is, the sequence xn satisfying the condition ║ xn - xm ║ → 0 as n, m → ∞) has a limit. In contrast to Euclidean spaces, the l2 Hilbert space is infinite dimensional, that is, infinite systems of linearly independent vectors exist in this space. For example, such a system is formed by the unit vectors

e1 = (1, 0, 0, …), e2 = (0, 1, 0,…), …

In this case, for any vector x from l2, the expansion

(1) x = x1e1 + x2e2 + …

applies in the system (en).

Another important example of Hilbert space is the L2 space of all measurable functions defined within a certain interval [a,b] for which the integral is finite. This integral is to be understood as an integral in the Lebesgue sense. In this case, the functions differing from each other only by the set of measure zero are regarded as identical. Multiplication of functions by a number and their addition are performed in the usual manner, and the scalar product is understood to mean the integral In this case the norm is equal to The role of the unit vectors in the preceding example may be played by any functions φi(x) from L2 possessing the properties of orthogonality and normalization as well as the following property of completeness: if f(x) belongs to L2 and then fx = 0 everywhere, except for the set of measure zero. Over the interval [0, 2π], such a system of functions may be represented by the trigonometric system Expansion (1) corresponds to the expansion of function f(x) from L2 into the Fourier series which converges to f(x) by the norm of the L2 space. In this case, for every function f(x), the Parseval equality is fulfilled.

The correspondence between the functions f(x) from L2 and the sequences of their Fourier coefficients a0, a1, b1, a2, b2, … is a mutually single-valued mapping of L2 onto l2, preserving the operations of addition and multiplication by numbers as well as the lengths and scalar products. Thus, these spaces are isomorphous and isometric and, hence, have the same structure.

In a broader sense, Hilbert space is understood to mean an arbitrary linear space in which the scalar product is given and which is complete with respect to the norm generated by this scalar product. Depending on whether multiplication is defined only by real numbers for the elements of the Hilbert space H or the elements of H may be multiplied by arbitrary complex numbers, real and complex Hilbert spaces are distinguished. In the latter case, the scalar product is understood to mean the complex function (x, y) defined for any pair x, y of elements from H and possessing the following properties:

(1) (x, x) = 0 only and only if x = 0,

(2) (x, x) ≥ 0 for any x from H,

(3) (x + y, z) = (x, z) + (y, z),

(4) (λx, y) = λ(x, y) for any complex number λ, and

(5) (x, y) = , where the bar denotes a complex conjugate quantity.

The norm of element x is determined by the equality Complex Hilbert spaces play a larger role in mathematics and its applications than real Hilbert spaces. One of the most important trends in the theory of Hilbert spaces is the study of linear operators in Hilbert space. It is precisely this problem area that is connected with the numerous applications of Hilbert space in the theory of differential and integral equations, probability theory, quantum mechanics, and other areas.

### REFERENCES

Kolmogorov, A. N., and S. V. Fomin. Elementy teorii funktsii i funktsional’nogo analiza, 2nd ed. Moscow, 1968.
Liusternik, L. A., and V. I. Sobolev. Elementy funktsional’nogo analiza, 2nd ed. Moscow, 1965.
Dunford, N., and J. Schwartz. Lineinye operatory. Vol. 1: Obshchaia teoria. Moscow, 1962. (Translated from English.)
Day, M. M. Normirovannye lineinye prostranstva. Moscow, 1961., (Translated from English.)

IU. V. PROKHOROV

References in periodicals archive ?
Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
In the following sections, following Roy and Kafatos (2003, 2004), the orientation selectivity of neurons as well as the relation between statistical distance and Hilbert space are examined, including the spontaneous activity of neurons.
Subsequently, Hussain and Khan  proved fixed point theorems of a *-nonexpansive multi-valued mapping and strong convergence of its iterates to a fixed point defined on a closed and convex subset of a Hilbert space by using the best approximation operator [P.sub.S]x, which is defined by [P.sub.S]x = {y [member of] Sx: [parallel]y - x[parallel] = d(x, Sx)}.
is a reproducing kernel of the Hilbert space [H.sub.K] if and only if.
In this paper, we establish a new inequality for frames in Hilbert spaces, where a scalar and a bounded linear operator with respect to two Bessel sequences are involved, and it is shown that our result can lead to the corresponding results of Balan et al.
Hajji, "Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space," Statistics & Probability Letters, vol.
This review may be found complemented, in Appendix A, by a brief explanation why the NHSP Hamiltonians H which are non-Hermitian (though only in an auxiliary, unphysical Hilbert space) still do generate the unitary evolution (naturally, via wave functions in another, nonequivalent, physical Hilbert space).
Let H be a complex separable Hilbert space, [rho], [sigma] [member of] S(H) such that [rho] [??] [sigma].
Many researchers studied the strong convergency theorems for solving the CCMP (1) using the sequence {[x.sub.n]} which is generated by algorithm (12) for their proposal on the gradient [nabla]g which is the class of nonexpansive mapping and the class of L-Lipschitzian mapping (see [19-25]) and in case the gradient [nabla]g is the class of 1/L-ism mapping such that L > 0, Xu (2010) introduced the sequence {[x.sub.n]} which is generated by algorithm (12), and he proved that this sequence {[x.sub.n]} converges weakly to the minimizer of the CCMP (1) in the setting of infinite-dimensional real Hilbert space (see ) under some appropriate condition.
Let V be a Hilbert-Schmidt completely continuous quasinilpotent (Volterra) operator acting in a separable Hilbert space H.
Several inequalities involving operators defined on a Hilbert space H were formulated and studied for operators of certain (particular) types.
Baillon  proved the first mean convergence theorem in a Hilbert space.

Site: Follow: Share:
Open / Close