Impregnation of Wood

The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Impregnation of Wood


the introduction of chemical substances into wood in order to improve its characteristics and impart new properties. Impregnation stabilizes dimensions, increases strength and resistance to water, moisture, and chemicals, and reduces cracking. The most common methods of impregnation employ antiseptics, which ensure protection against wood rot and other forms of biological deterioration, and fire retardants, which prevent wood from catching fire and burning. Impregnation is used in the railroad industry, power engineering, the manufacture of railroad cars, shipbuilding, and construction.

Impregnation of wood is classified as diffusive, capillary, or hydrostatic (pressure treatment), depending on the physical phenomena involved in the process. Diffusive impregnation is based on the diffusive migration of impregnants through the moisture-filled capillaries (seeDIFFUSION); only water-soluble impregnants are suitable for this method. In capillary impregnation, the impregnating fluid migrates through the capillaries in the wood under capillary pressure (seeCAPILLARY PHENOMENA). For example, in capillary impregnation using crown suction, the aqueous impregnating solution passes through openings in the lower section of the trunk or through the butt end into the sapwood of living or freshly felled tree by means of the suction force exerted by the crown. In pressure treatment, the impregnants migrate through the capillaries in the wood under artificially induced pressure. Liquid and gaseous substances are suitable for impregnation, as are melts of solid substances whose melting point does not exceed 200°-230°C.

In industry, impregnation of wood is primarily done with an autoclave under a pressure of up to 1.4 meganewtons/m2 (14 kilograms = force/cm2). The pressure treatment of unseasoned wood includes butt treatment, autoclave-diffusive methods, and successive drying and impregnation. In butt treatment, aqueous solutions are introduced under a pressure of up to 1 meganewton/m2 (10 kilograms = force/cm2) through one of the butt surfaces; in successive drying and impregnation, the wood is placed in an autoclave, where it is first dried, then impregnated. Impregnation technology requires that the wood be processed before impregnation; the processing methods include barking, mechanical working, drying, and slitting—the creation of slit-shaped openings that stimulate impregnation.


Hunt, G. M., and G. A. Garratt. Konservirovanie drevesiny. Moscow-Leningrad, 1961. (Translated from English.)
Baraks, A. M., and Iu. N. Nikiforov. Glubokaiapropitka drevesiny putem primeneniia nakolov, 2nd ed. Moscow, 1969.
Konservirovanie i zashchita lesomaterialov. Moscow, 1971.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
References in periodicals archive ?
The chemical modification or impregnation of wood can effectively reduce the hygroscopicity and increases dimensional stability of wood [1, 7].
For complete impregnation of wood flour internal mixing apparatus ran for one minute after addition of wood flour.
Previous reports of the chemical impregnation of wood using conventional fire retardants demonstrate effective biocidal properties (Mamey and Russell 2008).
Percentage volume increase after impregnation of wood samples was calculated by the formula:
The properties of the chemicals used for the impregnation of wood panels are represented in Table 2.
Preservative treatment and resin impregnation of wood
Therefore, impregnation of wood with an appropriate water repellent or applying a varnish compatible preservative chemical prior to hazardous service conditions has been undertaken to make wood more stable against photochemical degradation, dimensional changes, biological decomposition, and fire (Yalinkilic et al.