Rule of Inference

(redirected from Inference rules)

rule of inference

[′rül əv ′in·frəns]
(computer science)

Rule of Inference


(transformation rule [in some formal system] or rule of deduction), an admissibility rule that regulates the permissible methods of proceeding from a certain collection of assertions (statements, propositions, or formulas expressing these), called premises, to a certain specific assertion (statement, proposition, or formula), called the conclusion.

Rules of inference in which the form of the premises and conclusion is clearly indicated are termed direct; these include the inference rules of the propositional calculus, which permit one to proceed from an arbitrary conjunction to one of its members or to join an arbitrary proposition to any other proposition by means of the operation of disjunction. If in the premises and conclusion only the types of derivations are indicated from one of which it is permitted to proceed to another, then we have a rule of indirect inference. A typical example of a rule of indirect inference is the deduction theorem, a rule for introducing implications in the natural-deduction propositional and predicate calculi, which permits one to proceed (within certain natural limits) from any derivation A1, A2, …, An-1, Anǀ - B to a derivation of the form A1, A2,…, An–1ǀ–AnB.

Rules of inference that express methods of contensive reasoning were already partially systematized in the bounds of traditional formal logic in the forms of syllogistic modes and were subsequently absorbed, sometimes with changes, into mathematical logic; examples include the rule of modus ponens (syllogism scheme, elimination rule), which permits one to proceed from any implication and its antecedent (premise) to its consequent (conclusion). In addition, rules of inference are divided into primitive (basic, postulated) rules and derived rules (derivable from the primitive rules by means of certain metatheorems).

For the primitive inference rules of formal systems (calculi) that are, like axioms, postulates of a given system, the usual questions of consistency, completeness, and independence arise. Insofar as inference rules in one way or another express the relation of logical necessity, and since there is a close link between this relation and the operation of implication in the majority of logical calculi, the same link exists between the inference rules and theorems of any calculus, in particular between the primitive inference rules and the axioms; for example, the analogues of the inference rules of natural deduction are, respectively, the propositional-calculus axioms A & BA, A &, BB, AAB, and BAB.


Słupecki, J., and L. Borkowski. Elementy matematicheskoi logiki i teoriia mnozhestv. Moscow, 1965. (Translated from Polish.)
Serebriannikov, O. F. Evristicheskie printsipy i logicheskie ischisleniia. Moscow, 1970.
Smirnov, V. A. Formal’nyi vyvod i logicheskie ischisleniia. Moscow, 1972.
References in periodicals archive ?
In Chapter 3, on "Valla on Truth," the author demonstrates how scholastic inference rules are applied to various examples of forensic arguments in Valla's Dialectical Disputations " (34).
The University has developed a range of strategies to conduct intelligent text analysis, application of inference rules to filter out hidden knowledge and identifying unhelpful linking terms.
It is devoted to rule-based programming and rule-based systems including production rules systems, logic programming rule engines, and business rule engines/business rule management systems; semantic web rule languages and rule standards; rule-based event-processing languages (EPLs) and technologies; and research on inference rules, transformation rules, decision rules, production rules, and ECA rules.
In this manner, each input was fuzzified over predefined membership functions required by the inference rules.
In [14], IFS is introduced to accomplish target recognition through establishing a series of intuitionistic fuzzy inference rules.
In this paper, 49 fuzzy inference rules are established based on the expert knowledge and simulation results.
In a social network, the use of reasoners and inference rules allows to exploit data semantically enriched in the graph of the network, in order to obtain additional information (information inferred from the current data).
Based on balance theory, two inference rules are proposed to generate trusted evidence chains.
Layer II consists of neurons-rules and defines levels of activation for inference rules.
In the above example each input domain was divided into two sections therefore we have only four inference rules as follows:
1 The inference rules of the model P/I L M H L VL L L M L M H H M H VH