Jacobson radical


Also found in: Wikipedia.

Jacobson radical

[′jā·kəb·sən ‚rad·ə·kəl]
(botany)
Mentioned in ?
References in periodicals archive ?
This leads the description of the projective class ring [r.sub.p]([H.sub.n](q)), the Jacobson radical J([R.sub.p]([H.sub.n](q))) of the projective class algebra [R.sub.p] ([H.sub.n](q)) and the quotient algebra [R.sub.p] ([H.sub.n] (q))/ J ([R.sub.p] ([H.sub.n] (q))).
Let J = rad([H.sub.n](q)) be the Jacobson radical of [H.sub.n](q).
Put I = ([x.sup.n] - 1, [y.sup.n] - 1, [z.sup.2] - [[summation].sup.n-1.sub.i,j=0][x.sup.i][y.sup.j]z) and let J(K[x, y, z]/I) be the Jacobson radical of K[x, y, z]/I.