Light Sources

Light sources

Light can emanate from three different sources: point, line, or area sources. Point sources are bare incandescent amps, recessed incandescent, or high-intensity discharge lamps with small apertures where specular reflection can be precisely controlled. Line sources consist of bare fluorescent tubes and linear fluorescent fixtures. They can be controlled in their transverse axis, but not longitudinally. This makes them useful for lighting larger areas, where repetitive rows of fixtures are suitable. Area sources includes windows, skylights, and diffused elements with little or no directional control.
Illustrated Dictionary of Architecture Copyright © 2012, 2002, 1998 by The McGraw-Hill Companies, Inc. All rights reserved
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Light Sources


radiators of electromagnetic energy in the visible region of the spectrum (or the optical region—that is, not only the visible but also the ultraviolet and infrared regions). The sun, moon, and stars, as well as atmospheric electrical discharges, are natural light sources; devices that convert energy of any type into the energy of visible or optical radiation are artificial light sources.

A distinction is made between thermal light sources, in which light is produced when bodies are heated to high temperatures, and luminescent light sources, in which light is produced as a result of the conversion of various types of energy directly into optical radiation, regardless of the thermal state of the radiating body. Artificial light sources may be subdivided into chemical, electrical, and radioactive types (according to the nature of the energy used) and into illumination, signaling, and other types (according to function). Each of these types may in turn be classified on the basis of various additional features, such as structural, industrial, and operational characteristics.

The first artificial light sources (campfires, splinters, and torches) appeared in remote antiquity. Until the end of the 19th century, thermal light sources based on the burning of combustibles (candles, oil and kerosine lamps, or incandescent mantles) were used. The radiation in these devices is created by extremely fine particles of solid carbon that have been heated in a flame or by incandescent mantles. They provide a continuous spectrum of radiation. Their luminous efficiency is very low; it does not exceed one lumen per watt (the theoretical limit for white light is about 250 lumens per watt).

The first practical electric light sources appeared at the end of the 19th century. The Russian scientists P.N. Iablochkov, V.N. Chikolev, and A.N. Lodygin made a major contribution to the development of these sources. In the early 20th century the incandescent electric lamp, by virtue of its economy, cleanliness, and convenience of operation, rapidly began to replace combustion light sources in all areas. A modern incandescent electric lamp is a thermal light source in which radiation is generated in a spiral from a tungsten filament heated to a high temperature (about 3000°K) by an electric current passing through it. Incandescent lamps are the most widely used light sources. Their luminous efficiency is 10–30 lumens per watt.

Gas-discharge light sources, which use the radiation of an electrical discharge in inert gases or in vapors of various metals, especially mercury, came into use in the 1930’s. According to their principle of operation they are luminescent light sources or mixed-radiation light sources—that is, luminescent and thermal. As a result of their higher efficiency of radiation and greater breadth of spectrum than incandescent lamps, they are used in illumination, signaling, and advertising. Luminescent lamps, in which the ultraviolet radiation of the mercury discharge is converted into visible radiation by means of phosphors, are used on a particularly wide scale for illumination. The luminous efficiency of modern luminescent lamps producing white light may be as high as 80–85 lumens per watt. In so-called electroluminescent panels the luminescence of powdered phosphors in a dielectric medium appears upon exposure to an alternating electric field. They are close in efficiency to incandescent lamps and are used primarily as light indicators, signal panels, and decorative elements.

In semiconductor light sources the luminescence appears during passage of a current. For example, gallium arsenide produces infrared radiation, and gallium phosphide and silicon carbide produce visible radiation. These light sources are used for special purposes; as yet their efficiency is low. In cathode-luminescent light sources the phosphor is excited by fast electrons (indicator tubes, electro-optical image converters, and cathode ray tubes).

In radioisotopic light sources the phosphor is excited by the radioactive decay products of certain isotopes, such as tritium. Such light sources do not require an external energy source and have a long life, but they produce small light fluxes of low brightness. In principle, chemoluminescent light sources, in which luminescence results from the conversion of the energy of chemical reactions into radiation (as is the case in the luminosity observed in the animal and plant world—deep-water fish and fireflies, for example), are possible.

Lasers, which produce coherent light beams of high intensity, exceptional frequency uniformity, and pinpoint directionality, are a totally new type of light source.


Ivanov, A.P. Elektricheskie istochniki sveta, parts 1–2. Moscow-Leningrad, 1938–48.
Shatelen, M.A. Russkie elektrotekhniki vtoroipoloviny XIX veka. Moscow-Leningrad, 1950.
Rokhlin, G.N. Gazorazriadnye istochniki sveta. Moscow-Leningrad, 1966.
Kvantovaia elektronika: Malen’kaia entsiklopedüa. Moscow, 1969.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
References in periodicals archive ?
LED modules, which connect to light sources directly, can integrate electronic control, turning into fundamental units in motion sensors.
LED lighting technology is more effective and better than traditional light sources. Applying LED lighting to agriculture can help reduce energy consumption and avoid wastage of energy.
Their small size, durability, long operating lifetime, wavelength specificity, relatively cool emitting surfaces, and linear photon output with electrical current input make these solid-state light sources desirable for use in many growing systems.
Until recently, light fixtures had to be designed around traditional light sources (e.g., incandescent, halogen and fluorescent lamps).
Instrument Systems has introduced a versatile photometer, the DSP 200, which has an extremely broad measuring range from 0.1mlx to 200klx for all common light sources, including pulse-width modulated LEDs.
introduces two new UV (365nm) and UVV (405nm) Spot Cure LED light sources to our expanding Midori product line.
to Acquire US Laser Driven Extreme Ultraviolet Light Sources Maker Energetiq Technology
Artificial lighting can greatly hurt or help depending on the color temperature and light level, though indoor light sources do not produce a color temperature that works with users' natural circadian rhythms.
In addition to the well-proven BYK-Gardner light booth range, the lite version with five light sources and compact design builds the standard for critical visual evaluation in laboratory and production.
In the article "Anatomy and micromorphometric analysis of leaf Catasetum x apolloi Benelli & Grill with addition of potassium silicate under different light sources", DOI, published in Brazilian Journal of Biology', vol.
The incandescent, fluorescent and HID legacy light sources have different spectro-radiometric distributions, which are affected by temperature, partial gas pressure (HID) and applied voltage.