Also found in: Dictionary, Thesaurus, Wikipedia.



a trend in the foundations of mathematics and the philosophy of mathematics whose fundamental thesis is the assertion of the “reducibility of mathematics to logic,” that is, the possibility (and necessity) of defining all primitive mathematical concepts (not definable within the framework of mathematics itself) in terms of “pure” logic and of proving all mathematical propositions, including the axioms, by logical methods.

The concepts of logicism were first advanced by G. W. Leibniz, but in its expanded form the doctrine was first formulated in the works of G. Frege, who proposed reducing the fundamental mathematical concept—that of the natural number—to the extensions of concepts. Frege also worked out in detail a logical system by means of which he was able to prove all the theorems of arithmetic. Since by that time in mathematics the work on reducing, in the same sense as above, the fundamental concepts of mathematical analysis, geometry, and algebra to arithmetic had been practically completed, by carrying out partial reductions of them to one another and by expressing their concepts in terms of set theory, Frege believed that the program of logicism had thereby been basically carried out.

However, even before the publication of Frege’s two-volume work Grundgesetze der Arithmetik (The Fundamental Laws of Arithmetic; 1893–1903), B. Russell had discovered a contradiction (now usually called Russell’s paradox) in Frege’s system. Russell himself, however, shared the fundamental theses of the program of logicism. He made an attempt to “remedy” Frege’s system and to “rescue” it from contradictions. The solution of this problem required much work on the consistent and detailed formalization not only of mathematics but of the logic that lay at its foundation (according to the program of logicism). The result of this work was the three-volume Principia Mathematica (1910–13) written by Russell together with A. N. Whitehead.

The chief novelty in the Russell-Whitehead system (called the PM system below) was the construction of logic in the form of a “stage-by-stage” calculus,” or “theory of types.” The formal objects of this theory were divided into types (stages), and this “hierarchy of types” (in other modifications of the PM system, an additional “hierarchy of levels”) made possible the elimination of all known paradoxes. However, in order to construct classical mathematics by means of the PM system, it was necessary to add to it certain axioms that intuitively characterize the important properties of the given concrete “world of mathematics” (and, of course, the world of real things corresponding to it) and that are not in any way “analytical truths,” or, in the sense of Leibniz, true “in all possible worlds.” Thus, not all of Russellian mathematics is derivable from logic. Furthermore, this mathematics does not constitute all of mathematics: as was shown by K. Godel in 1931, PM-type systems, as well as all systems as powerful as it is, are essentially incomplete, that is, it is always possible to formulate by their means intuitively true but undecidable (neither provable nor disprovable) mathematical assertions.

Thus, the program of logicism for a “purely logical” foundation of mathematics proved to be impracticable. Nevertheless, Russell’s results as well as the work of other scientists who later proposed various improvements of the PM system (such as the American mathematician W. V. O. Quine) have exerted an enormous positive influence on the development of mathematical logic and of science as a whole because they facilitate the formation and refinement of the most important logicomathematical and general methodological concepts and the construction of a corresponding exact mathematical apparatus.


Kleene, S. C. Vvedenie ν metamatematiku. Moscow, 1957. Chapter 3. (Translated from English.)
Fraenkel, A., and Y. Bar-Hillel. Osnovaniia teorii mnozhestv. Moscow, 1966. Chapter 3. (Translated from English.)


References in periodicals archive ?
To Kelsen's critics, Kaufmann included, logicism is a species of formalism.
1994a), "Introduction: Beyond Logicism in Critical Thinking", in Walters 1994b: 1-22.
The difficulties and the mature logicism were then already known, and on their basis Carnap gave his review.
26) Bert believes that set theory is consistent and Dave logicism.
He is also a major exponent of Frege's version of logicism in the philosophy of mathematics.
Ricardo's narrow logicism did not permit him to see more widely.
And the irreverence of mere logicism of the Arian mind is always a threat to us enroute.
He is then faced with question of how to reconcile his preference for nominalism with logicism, which depends on the existence of abstract objects (6).
Chapter 5 is a discussion and comparison of the views of Russell, Frege, and Wittgenstein on logicism (the thesis that mathematics is reducible to logic), and other topics in the philosophy of logic, such as the nature of identity, number, and arithmetic, with Landini offering his own critical commentary on how to solve some of the logical paradoxes.
Among the topics are the impact of Russell's pragmatism on him, mutual influences between Ramsey and Wittgenstein, the Ramsey sentence and theoretical content, his contributions to economics, his theory of truth and the origin of the pro-sentential account, his removal of Russell's Axion of Reducibility in light of Hilbert's critique of Russell's logicism, the influence of Peirce on his pragmatism, the prospects for reliabilism, ontology from language, and the notion of arbitrary function.
The story of how Frege's logicism then proceeded to its shipwreck in Russell's paradox is much discussed in recent philosophy of mathematics, and I won't rehearse Potter's able recounting of it.