Spinor

(redirected from Majorana-Weyl spinor)
Also found in: Dictionary.

spinor

[′spin·ər]
(mathematics)
A vector with two complex components, which undergoes a unitary unimodular transformation when the three-dimensional coordinate system is rotated; it can represent the spin state of a particle of spin ½.
More generally, a spinor of order (or rank) n is an object with 2 n components which transform as products of components of n spinors of rank one.
A quantity with four complex components which transforms linearly under a Lorentz transformation in such a way that if it is a solution of the Dirac equation in the original Lorentz frame it remains a solution of the Dirac equation in the transformed frame; it is formed from two spinors (definition 1). Also known as Dirac spinor.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Spinor

 

a mathematical quantity whose transformation from one coordinate system to another is governed by a special law. Spinors are used for various problems in, for example, quantum mechanics and representations of groups.

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.