Monolayer


Also found in: Dictionary, Medical, Acronyms, Wikipedia.

monolayer

[′män·ō‚lā·ər]
(physical chemistry)

Monolayer

 

a layer of a substance 1 molecule thick on a surface or at a phase boundary. Monolayers are produced by adsorption, surface diffusion, and evaporation of a solvent from a solution containing a nonvolatile component. Monolayers that are formed by surface-active substances on the surface of a liquid or at the boundary between two nonmiscible liquids may exist in various two-dimensional states (gaseous, condensed, and intermediate, or “liquid-expanded”).

In gaseous monolayers, the distance between the molecules is great relative to their size; therefore, cohesive molecular interactions are virtually absent. On the other hand, condensed monolayers have limiting molecular packing density. In the case of fatty acids, alcohols, and other molecules that may be represented as hydrocarbon chains with a polar terminal group, condensed monolayers resemble “picket fences” occupying the entire surface area. Each molecule in such a “fence” is arranged perpendicularly or at an angle to the phase boundary surface and, regardless of its own length, usually occupies an area of 20–25 square angstroms. As a rule, linear macromolecular compounds form monolayers with horizontal orientation of the macromolecules. If the cohesion is sufficiently high, monolayers may have surface viscosity and strength that differ sharply from those of the bulk phases.

The structure and properties of monolayers have a strong effect on mass transfer (evaporation and diffusion), catalysis, friction, adhesion, and corrosion; this is taken into account in solving various engineering and industrial problems. The stability of highly disperse systems (sols, emulsions, and suspensions) often depends predominantly on the state of a monolayer.

Monolayers also play an important role in biological systems. For example, there are membrane structures in all cells of living organisms. Biological membranes basically consist of two monolayers of protein molecules with a double (bimolecular) layer of lipids between them. The thickness of such a four-layer membrane is 70–80 angstroms. The alternation of various types of monolayers also results in the lamellar structure of certain cell organelles, such as chloroplasts in the cells of green plants. Artificial monolayers are used as models of biological membranes in studying their structure and function.

REFERENCES

Adamson, A. W. Physical Chemistry of Surfaces, 2nd ed. New York, 1971.
Gaines, G. L. Insoluble Monolayers at Liquid-Gas Interfaces. New York [1966].
Beredjick, N. “Issledovanie monomolekuliarnykh sloev polimerov.” In Noveishie melody issledovaniia polimerov. Moscow, 1966. Chapter 16. (Translated from English.)

L. A. SHITS

References in periodicals archive ?
This report researches the worldwide Monolayer Graphene Film market size (value, capacity, production and consumption) in key regions like North America, Europe, China and Japan.
"Secondly, we have demonstrated a way to easily stack up these wafer-scale monolayers of 2-D material."
When comparing the monolayer separators, optimum porosity and thickness are 41% and 50 [micro]m, respectively.
As seen in the set of equations, the five kinds of partial pressure of [mathematical expression not reproducible], and S ([P.sub.S]) influence each other, and the most favorable growth conditions for monolayer growth of Mo[S.sub.2] are critically dependent on a well-controlled balance between each of them.
Thus [A.sub.id]= ([X.sub.1][A.sub.1] + [X.sub.2][A.sub.2]); where [A.sub.id] is the area per molecule in the ideally mixed monolayer and [A.sub.1] and [A.sub.2] are the corresponding values for the individual components, whose respective mole fractions are [X.sub.1] and [X.sub.2].
It is therefore surmised that the B atoms are removed more easily than the N atoms from h-BN monolayers by electron beam irradiation [10].
In order to investigate the stability of mixed monolayer successive compression-expansion cycles in air/ subphase interface were conducted (see Figures 4(a), 4(b), and 4(c)).
It is composed of lots of Mo[S.sub.2] convex flakes, each convex flake corresponding to a monolayer Mo[S.sub.2] film which has a PL radiation, and lots of convex flakes showed strong PL radiation as a whole.
The TEER of HUVEC monolayers was reduced by nearly 50% after a 30 min incubation with the cytotoxic factor, indicating an increase in monolayer permeability (p < 0.0001).
Though spreading monolayer at water/air surface had been thought to be an effective way to reduce water evaporation in open storage since 1950s, it had not been widely used in practical project.
The [PI] measurement supplies the direct information on free energy of interactions between lipid monolayer and the penetrant.