natural deduction

(redirected from Natural deduction system)
Also found in: Dictionary.
Related to Natural deduction system: Natural deduction logic

natural deduction

A set of rules expressing how valid proofs may be constructed in predicate logic.

In the traditional notation, a horizontal line separates premises (above) from conclusions (below). Vertical ellipsis (dots) stand for a series of applications of the rules. "T" is the constant "true" and "F" is the constant "false" (sometimes written with a LaTeX \perp).

"^" is the AND (conjunction) operator, "v" is the inclusive OR (disjunction) operator and "/" is NOT (negation or complement, normally written with a LaTeX \neg).

P, Q, P1, P2, etc. stand for propositions such as "Socrates was a man". P[x] is a proposition possibly containing instances of the variable x, e.g. "x can fly".

A proof (a sequence of applications of the rules) may be enclosed in a box. A boxed proof produces conclusions that are only valid given the assumptions made inside the box, however, the proof demonstrates certain relationships which are valid outside the box. For example, the box below labelled "Implication introduction" starts by assuming P, which need not be a true proposition so long as it can be used to derive Q.

Truth introduction:

- T

(Truth is free).

Binary AND introduction:

----------- | . | . | | . | . | | Q1 | Q2 | ----------- Q1 ^ Q2

(If we can derive both Q1 and Q2 then Q1^Q2 is true).

N-ary AND introduction:

---------------- | . | .. | . | | . | .. | . | | Q1 | .. | Qn | ---------------- Q1^..^Qi^..^Qn

Other n-ary rules follow the binary versions similarly.

Quantified AND introduction:

--------- | x . | | . | | Q[x] | --------- For all x . Q[x]

(If we can prove Q for arbitrary x then Q is true for all x).

Falsity elimination:

F - Q

(Falsity opens the floodgates).

OR elimination:

P1 v P2 ----------- | P1 | P2 | | . | . | | . | . | | Q | Q | ----------- Q

(Given P1 v P2, if Q follows from both then Q is true).

Exists elimination:

Exists x . P[x] ----------- | x P[x] | | . | | . | | Q | ----------- Q

(If Q follows from P[x] for arbitrary x and such an x exists then Q is true).

OR introduction 1:

P1 ------- P1 v P2

(If P1 is true then P1 OR anything is true).

OR introduction 2:

P2 ------- P1 v P2

(If P2 is true then anything OR P2 is true). Similar symmetries apply to ^ rules.

Exists introduction:

P[a] ------------- Exists x.P[x]

(If P is true for "a" then it is true for all x).

AND elimination 1:

P1 ^ P2 ------- P1

(If P1 and P2 are true then P1 is true).

For all elimination:

For all x . P[x] ---------------- P[a]

(If P is true for all x then it is true for "a").

For all implication introduction:

----------- | x P[x] | | . | | . | | Q[x] | ----------- For all x . P[x] -> Q[x]

(If Q follows from P for arbitrary x then Q follows from P for all x).

Implication introduction:

----- | P | | . | | . | | Q | ----- P -> Q

(If Q follows from P then P implies Q).

NOT introduction:

----- | P | | . | | . | | F | ----- / P

(If falsity follows from P then P is false).


//P --- P

(If it is not the case that P is not true then P is true).

For all implies exists:

P[a] For all x . P[x] -> Q[x] ------------------------------- Q[a]

(If P is true for given "a" and P implies Q for all x then Q is true for a).

Implication elimination, modus ponens:

P P -> Q ---------- Q

(If P and P implies Q then Q).

NOT elimination, contradiction:

P /P ------ F

(If P is true and P is not true then false is true).
References in periodicals archive ?
285: "In 'Aristotle's Natural Deduction System' John Corcoran argues that Aristotle developed a natural deduction system." COMMENT: The review never mentions the fact that Corcoran was arguing against the then-well established view that the syllogistic was an axiomatic theory.
The names Lukasiewicz and Corcoran do not occur, nor do the expressions 'axiomatic system' and 'natural deduction system'.
Corcoran, 'Aristotle's natural deduction system' (...) 1974, has convincingly shown that the best formalization of Aristotle's reductio ad impossibile is by means of a natural deduction system."
Smiley each gave treatments of Aristotle's logic as a natural deduction system that did not involve propositional logic [Corcoran, Arch.
John] Corcoran, working independently, showed that Aristotle's theory of deduction contains a self-sufficient natural deduction system that presupposes no other logic."
(Aristotle would merely have been the founder of 'the axiomatic theory of universals')" ("Aristotle's Natural Deduction System", 98).