numeration

(redirected from Numerative)
Also found in: Dictionary, Thesaurus, Legal.

numeration,

in mathematics, process of designating numbersnumber,
entity describing the magnitude or position of a mathematical object or extensions of these concepts. The Natural Numbers

Cardinal numbers describe the size of a collection of objects; two such collections have the same (cardinal) number of objects if their
according to any particular system; the number designations are in turn called numerals. In any place value system of numeration, a base number must be specified, and groupings are then made by powers of the base number. The position of a numeral in a grouping indicates which power of the base it is to be multiplied by. The most widely used system of numeration is the decimal systemdecimal system
[Lat.,=of tenths], numeration system based on powers of 10. A number is written as a row of digits, with each position in the row corresponding to a certain power of 10.
, which uses base 10. Thus, in the decimal system, the numeral 342 means (3×102)+(4×101)+(2×100), or 300+40+2. The binary systembinary system,
numeration system based on powers of 2, in contrast to the familiar decimal system, which is based on powers of 10. In the binary system, only the digits 0 and 1 are used.
uses base 2 and is important because of its application to modern computers. Whereas the decimal system uses the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, the binary system uses only the two digits 0 and 1. In the binary system, the numeral 111, for example, means (1×22)+(1×21)+(1×20), i.e., 4+2+1, or 7, in the decimal system. The decimal numeral 7 and the binary numeral 111 are thus designations for the same number. The duodecimal system uses 12 as a base and has some advantages arising from the fact that 12 is divisible by four different numbers—2, 3, 4, 6—other than 1 and 12 itself. The base 12 requires the use of 12 different digits. Thus, in addition to the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, the symbols X (called "dek") and E (called "el") to represent the numbers 10 and 11 have been suggested by the Duodecimal Society of America. The duodecimal numeral 24E, for example, means (2×122)+(4×121)+(11×120), i.e., (2×144)+(4×12)+(11×1), or 347, in the decimal system. The hexadecimal system, or base 16, uses the digits 0 through 9 and the letters A through F (or a through f) to represent 16 different digits. Hexadecimal numeration is often used in computing because it more readily translates the binary system used by computers than decimal numeration does. A computer byte, which is composed of 8 bits (binary digits), must be represented by the numbers 0 through 255 in the decimal system, but in the hexadecimal system it is represented by 00 through FF. The decimal, binary, duodecimal, and hexadecimal systems of numeration constitute only four examples. The ancient Babylonians used a system of base 60, which still survives in our smaller divisions both of time and of angle, i.e., minutes and seconds. In general, any integer n greater than one can be used as the base of a numeration system, and the system will employ n different digits.

numeration

[‚nü·mə′rā·shən]
(mathematics)
The listing of numbers in their natural order.

numeration

1. the act or process of writing, reading, or naming numbers
2. a system of numbering or counting
References in periodicals archive ?
the Numerative specifies by quantity or ordination (two trains, next train); the Epithet by reference to a property (long trains); the Classifier by reference to a subclass (express trains, passenger trains); and the Qualifier by reference to some characterizing relation or process (trains for London, train I'm on).
Also make a number of sets of nominal group cards (Deictic, Numerative, Epithet, Classifier, Thing, Qualifier).

Site: Follow: Share:
Open / Close