Open Systems

Also found in: Dictionary, Medical, Acronyms.
Related to Open Systems: Open Systems Interconnection

open system

A system that allows third parties to make products that plug into or interoperate with it. For example, the PC is an open system. Although the fundamental standards are controlled by Microsoft, Intel and AMD, thousands of hardware devices and software applications are created and sold by other vendors for the PC.

For years, the term "open systems" (plural) referred to the Unix world because Unix ran in more types of computer hardware than any other operating system (combined with Linux, it still does). Contrast with closed system.

Open Systems vs. Open Source
Open systems refers to open platforms, whereas open source refers to the software's source code and rights regarding its redistribution. Open systems may employ open source software or proprietary software. See open source.

Open Systems vs. Open Standards
Open systems may or may not employ open standards, the Windows PC being the prime example of an open system that is "not" an open standard (governed by a standards organization).

On the other hand, open standards do imply open systems, and the two terms are often used synonymously. However, there is absolutely no reason why an open standard could not be employed within a closed system that cannot be extended or enhanced by a third party. See open standards.
Copyright © 1981-2019 by The Computer Language Company Inc. All Rights reserved. THIS DEFINITION IS FOR PERSONAL USE ONLY. All other reproduction is strictly prohibited without permission from the publisher.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Open Systems


thermodynamic systems that exchange mass, as well as energy and momentum, with the environment. The most important type of open systems are chemical systems in which reactions take place continuously, reactants enter from without, and reaction products are removed. Biological systems, or living organisms, may also be considered open chemical systems. Such an approach to living organisms makes it possible to study the processes of the organisms’ development and vital activity on the basis of the laws of the thermodynamics of nonequilibrium processes, physical kinetics, and chemical kinetics.

The properties of open systems are simplest near the state of thermodynamic equilibrium. If the deviation of an open system from thermodynamic equilibrium is small and the system’s state changes slowly, then the nonequilibrium state may be characterized by the same parameters as the equilibrium state, including temperature and the chemical potentials of the system’s components (but with values dependent on the coordinates and time, rather than values that are constant for the entire system). The degree of disorder of such open systems, like the degree of disorder of systems in the equilibrium state, is characterized by the entropy. By virtue of the additivity of entropy, the entropy of open systems in the nonequilibrium (locally equilibrium) state is defined as the sum of the entropies of individual small elements of the systems that are in local equilibrium.

Deviations of the thermodynamic parameters from their equilibrium values (thermodynamic forces) induce fluxes of energy and mass in a system. The transfer processes that take place lead to an increase in the system’s entropy. The entropy increment of the system per unit time is called the entropy production.

According to the second law of thermodynamics, in a closed isolated system the entropy increases, tending toward its maximum equilibrium value, whereas the entropy production tends toward zero. In contrast to a closed system, steady states with constant entropy production are possible in open systems; in this case the entropy must be removed from the system. Such a steady state is characterized by constant rates of chemical reactions and of the transfer of reactants. In such “flowing equilibrium,” entropy production in an open system is minimal (the Prigogine theorem). The steady nonequilibrium state plays the same role in the thermodynamics of open systems as does thermodynamic equilibrium for isolated systems in the thermodynamics of equilibrium processes. The entropy of an open system in this state is held constant, since its production is balanced by removal from the system, but this steady-state value of entropy does not correspond to maximum entropy, as in an isolated system.

The most interesting properties of open systems are displayed in nonlinear processes. In such processes, thermodynamically stable nonequilibrium states—in particular, steady states—remote from the state of thermodynamic equilibrium and characterized by some spatial or temporal order (structure), which is called dissipation structure because its existence requires continuous exchange of mass and energy with the environment, can be achieved in open systems. Nonlinear processes in open systems and the possibility of forming structures are studied using the equations of chemical kinetics: the balance of the rates of chemical reactions in a system with the rates of supply of reactants and the rates of removal of reaction products. The accumulation of active reaction products or heat in open systems may lead to a self-oscillating (self-sustaining) reaction mode. For this to occur, positive feedback must be present in the system in the form of acceleration of the reaction either by the reaction’s product (chemical autocatalysis) or by the heat released during the reaction. In the same way as stable, self-regulating sustained oscillations, or self-oscillations, arise in an oscillatory circuit with positive feedback, sustained self-regulating chemical reactions arise in open chemical systems with positive feedback. Autocatalytic reactions can lead to instability of chemical processes in a homogeneous medium and to the appearance of steady states in open systems with an ordered spatial nonuniform distribution of concentrations (dissipation structures with order at the macroscopic level). The nature of the structures is determined by the specific type of chemical reaction. Concentration waves of a complex nonlinear nature are also possible in open systems.

The theory of open systems is important for understanding the physicochemical processes underlying life, since a living organism is a stable self-regulating open system that has a high level of organization on both the molecular and macroscopic levels. The treatment of living systems as open systems in which nonlinear chemical reactions take place opens up new possibilities for study of the processes of molecular self-organization at the early stages of the evolution of life.

The theory of open systems is a particular case of the general theory of systems, which include data-processing systems, transportation junctions, power-supply systems, and others that are treated in cybernetics. Such systems, although not thermodynamic, can be described by a system of balance equations that in the general case are nonlinear and analogous to those considered for physicochemical and biological open systems. Common problems of regulation and optimum functioning exist for all systems.


Schrödinger, E. Chto takoe zhizn’? S tochki zreniia fizika, 2nd ed. Moscow, 1972. (Translated from English.)
de Groot, S., and P. Mazur. Neravnovesnaia termodinamika. Moscow, 1964. (Translated from English.)
Frank-Kamenetskii, D. A. Diffuziia i teploperedacha v khimicheskoikinetike, 2nd ed. Moscow, 1967.
Glansdorff, P., and I. Prigogine. Termodinamicheskaia teoriia struktury, ustoichivosti i fluktuatsii. Moscow, 1973. (Translated from English.)
Panchenkov, G. M., and V. P. Lebedev. Khimicheskaia kinetika ikataliz. Moscow, 1961.
Pasynskii, A. G. Biofizicheskaia khimiia. Moscow, 1963.
Vol’kenshtein, M. V. “Biologiia i fizika.” Uspekhi fizicheskikh nauk, 1973, vol. 109, fasc. 3.
Prigogine, I., and Zh. Nikolis. “Biologicheskii poriadok, struktura i neustoichivosti.” Ibid.
Eigen, M. Samoorganizatsiia materii i evoliutsiia biologicheskikh makromolekul. Moscow, 1973. (Translated from English.)


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
References in periodicals archive ?
Another trend in software enhancements that holds potential for an open system approach is the emergence of virtual tools and instruments.
Since they build on our hypermedia experience, we are confident that these guidelines will address the needs of current and future generations of open systems.
With open systems, companies have the power to improve the information capabilities of their businesses in ways that were not possible before.
Outputs - third component of the open system - include measurable services, such as quality of patient care.
But clearly, Dewar said, "users have voted for open systems and I'm very committed to the idea of open systems."
Not that a move to open systems can be accomplished overnight.
NYSE Euronext used the UniKix software to rehost its mainframe workload onto open systems.
Payton stressed the importance of finding ways to use acquisition funds more efficiently through open systems technology and alternative fuels, to allow for the recapitalization of the Air Force's aging aircraft.
OSAS 7.0 also includes an Install-Shield wizard for easier installation, dozens of Excel PivotTable productivity reports, an open database connectivity (ODBC) driver, improved user tracking, shipment tracking, address mapping and much more, Open Systems says.
Fibre Channel SANs emerged in the late 1990s as the storage networking technology of choice for open systems servers in core corporate data centers (the glass house), providing a shared storage pool for a corporation's most important business applications.
Advanced Digital Information Corporation, the leader in Intelligent Storage solutions for the open systems market, has announced an upgrade to its Scalar 100 enterprise tape library designed to make it easier for IT departments to support mixed backup architectures and reduce overall ownership costs.
Today, almost every building controls vendor is 'spinning' the definition of open systems to include their products.

Full browser ?