p-adic integer

p-adic integer

[pē¦adik ′int·i·jər]
(mathematics)
For a fixed prime number p, a sequence of integers, x0, x1, …, such that xn -xn-1divisible by p n for all n ≥0; two such sequences, xn and yn , are considered equal if xn -yn is divisible by p n +1for all n ≥0, and the sum and product of two such sequences is defined by term-by-term addition and multiplication.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
If N [greater than or equal to] 0, and hence, if [mathematical expression not reproducible] in [??], then x is said to be a p-adic integer of [mathematical expression not reproducible].
(iv) A p-adic integer r with [[upsilon].sub.p](r) = l can always be written as r = [p.sup.l]([e.sub.0] + [[summation].sup.[infinity].sub.j=1] [e.sub.j][p.sup.lj]) with [e.sub.0] [member of] [Z.sup.*.sub.p].
Let [[mu].sub.q] be the group of q-th roots of unity in the ring [Z.sub.p] of p-adic integers. For each integer b with 0 [less than or equal to] b [less than or equal to] p - 1 and each p-adic integer [alpha] [member of] [Z.sub.p] with [alpha] [equivalent to] 1 mod p, we put
This edition has been updated to incorporate new approaches on p-adic integers and modules and on the determinability of a module by its automorphism group.
Throughout this paper, [Z.sub.p], [Q.sub.p], and [C.sub.p] denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of [Q.sub.p], respectively.
If p is an odd prime, then every integer n [equivalent to] 1 mod [p.sup.1/p(g)+1] is a gth power in the ring [Z.sub.p] of p-adic integers. The same holds if p = 2 under the stronger hypothesis that n = 1 mod p[sup.[nu]p(g)+2].
These modules play important roles in various areas of algebra, primarily commutative algebra, including rings of p-adic integers and certain power series rings over division rings.
Let [Z.sub.p], [Q.sub.p] and [C.sub.p] be denoted by the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of [Q.sub.p] and let U D([Z.sub.p], [C.sub.p]) be denoted by the space of uniformly differentiable functions from [Z.sub.p] to [C.sub.p], cf.[2, 3, 5].