Planetary Gear Train

planetary gear train

[′plan·ə‚ter·ē ′gir ‚trān]
(mechanical engineering)
An assembly of meshed gears consisting of a central gear, a coaxial internal or ring gear, and one or more intermediate pinions supported on a revolving carrier.

Planetary Gear Train


a mechanism for transmitting rotational motion by spur or bevel gears (less often by friction wheels) that include planet gears, or pinions that undergo coum-pound motion and have a moving axis of rotation. The moving element on which the axles of the planet gears are supported is called the carrier (Figure 1). The planets usually mesh with sun, or central, gears that rotate about the shaft of the mechanism or are fixed. The number of planets in a planetary gear train depends on the possibility of housing them in the mechanism, but in order to achieve a more uniform load distribution as a result

Figure 1. Planetary gear train with negative gear ratio of the simple train: (a) single-row, (b) two-row; (z,) and (z4) sun gears, (z2) and (Zj) planets, (C) carrier

of the automatic adjustment of the gears it is preferable to have three planets. The compactness and small weight of a planetary gear train are due largely to the distribution of the transmitted power among the planets and to the use of internal gearing. A gear ratio in a planetary gear train is designated by the letter u and indicates the ratio of the angular velocities of the elements designated by a double subscript; a superscript shows which element of the mechanism is taken as fixed. If the directions of rotation of the driving and driven gears are identical, then the gear ratio is considered to be positive, but if the directions are different, it is taken as negative.

The simplest planetary gear train has one degree of freedom and one fixed sun gear. The properties and capabilities of such planetary gear trains depend largely on the sign of the gear ratio of the simple train—that is, the train in which the carrier is stopped and the gear train becomes an ordinary mechanism with fixed wheel axles. If the gear ratio in the simple train is negative, then

where ω1C and ω4C are the angular velocities of the sun gears. The gear ratio of the planetary train is then given by the formula

Here z1 and z4 are the numbers of teeth on the sun gears, and Z2 and Z3 are the numbers of teeth on the planets. Such planetary trains have a high efficiency (0.96–0.99) but do not permit the obtaining of high gear ratios. When there are three planets in a single-row planetary train (Figure 1,a), u can be no greater than 12 and is usually ≤ 8. For a two-row train (Figure l,b), usually u ≤ 15. In selecting the number of teeth on the gears, the rule governing the assembly of a planetary train must also be taken into account. In the simplest case, for a single-row planetary gear train it is sufficient that z1 and z4 be multiples of k, the number of planets. In order to obtain trains with a high efficiency and a high gear ratio, several single-row planetary trains of the type in Figure l,a are usually combined in series.

If the gear ratio in the simple train is positive (Figure 2),

then the gear ratio of the planetary train is given by the formula

Such planetary trains permit the obtaining of very high gear ratios, but they have a low efficiency.

If shaved gears are used and the number of teeth is selected so that (z2/z1)(z4/z3) is close to 1, it is possible to obtain planetary trains with an extremely high gear ratio. For example, when z1 = z3, z2 = z1 – 1, and z4 = z1 + 1, the planetary gear trains illustrated in Figure 2,a and 2,b give uC14 = Z12. In other words, when z1 = 100, u = 10,000. Here, however, the efficiency of the train is less than 0.01. For average gear ratios (of the order of 100), the efficiency of planetary gear trains with internal gearing is equal to 0.6–0.7. Such trains can therefore be used in power transmissions.

The fabrication of planetary gear trains is greatly simplified if

Figure 2. Planetary gear train with positive gear ratio of the simple train: (a) and (b) with external and internal gearing, (c) with simplified planets

the planets are made single-crown and of extended width and are in mesh with sun gears that have different numbers of teeth (Figure 2,c).

Planetary gear trains of various functions and designs and with different characteristics are used in reduction gears to obtain compact coaxial designs and high gear ratios and in gear boxes, reversing gears, and clutch mechanisms to obtain convenient control by means of brakes and friction clutches. There exists a planetary gear train with a gear ratio of up to 2 X 106.


Kudriavtsev, V. N. Planetarnye peredachi, 2nd ed. Moscow-Leningrad, 1966.
Detali mashin: Raschet i konstruirovanie: Spravochnik, 3rd ed., vol. 3. Edited by N. S. Acherkan. Moscow, 1969.


References in periodicals archive ?
The planetary gear train is self-aligning, with carrier modules that float radially and axially to distribute all loads.
QUIET: New-design planetary gear train and series-wound motor deliver fast, quiet, and reliable pulling power.
The new motor and three-stage planetary gear train offer outstanding power and reliability, plus smooth, quiet operation.
ProVantage winches features a powerful permanent magnet motor, a smooth, reliable three-stage planetary gear train and metal gear housing, an easy-to-use clutch control dial, full sealing to keep the elements out, a patented roller disc brake for excellent control while winching, and a corrosion-resistant black powder-coated finish with a unique black hook and tie rods.
Differential planetary gear train provides excellent performance and a self-locking brake.
5ti Thermometric winch features the WARN exclusive multi-segment CAM actuated brake, a new Gen II Bosch motor and a rugged 3-stage planetary gear train reduction system.
One small sampling of topics turns up analyzing and simulating a new integrated printing and drying machine, indoor ambulatory monitoring for psycho-physiological and behavioral activity assessment, tooth contact analysis of planetary gear trains with equally spaced planets, the anti-friction effect of micro-deep holes for higher pair components, an optical fiber sensing technique for monitoring stray currents in coal mines, modeling and control of unmanned trimaran vehicles, elastic-plastic impact loads of steel spheres impacting on planes, and calculating the ballast water load of a semi-submersible barge.
This assumption is reasonable for planetary gear trains with high transmission ratio and also simplifies the analysis.
Planetary gear trains, also referred as epicyclic gear trains, are those in which one or more gears orbit about the central axis of the train.
The Chinese contributors investigate friction coefficients during warm deep drawing of magnesium alloy sheet, topological synthesis of planetary gear trains, the effects of cutting fluids on the machinabilty of glass BK7, and the stamping of car panel parts.

Full browser ?