quantifier

(redirected from Quantifiers)
Also found in: Dictionary, Thesaurus.

quantifier

[′kwän·tə‚fī·ər]
(mathematics)
Either of the phrases “for all” and “there exists”; these are symbolized respectively by an inverted A and a backward E.

Quantifier

 

(from the Latin quantum, “how much”), a logical operation that gives the quantitative character of the range of objects with which the expression obtained as a result of its application is concerned. In ordinary language, words of the type “all,” “each,” “some,” “there exists,” “there is,” “any,” “every,” “unique,” “several,” “infinitely many,” “a finite number,” as well as all cardinal numbers, serve as conveyors of these characteristics. In formal languages in which predicate calculus is a constituent part, two kinds of quantifier turn out to be sufficient for the expression of all such characteristics: the universal quantifier (“for all x,” denoted by ∀x, (∀x), (x), (Ax), Quantifier) and the existential quantifier (“for some x,” denoted by, Quantifier). With the aid of quantifiers it is possible to write down the four fundamental forms of judgment of traditional logic: “all A are B” is written as ∀x [A(x) ⊃ B(x)], “no A is B” as ∀x[A(x)⊃ ∼ B(x)], “some A are B” as ∃ x [A (x) & B(x)], and “some A are not B” as ∃x[A(x)]; here A(x) denotes that x possesses the property A, ⊃ is the implication sign, ∼ is the negation sign, and & is the conjunction sign.

The part of a formula over which the operation of any quantifier is distributed is called the scope of operation of that quantifier (it may be indicated by parentheses). The entry of any variable into the formula directly after the quantifier or within the scope of the quantifier after which the variable stands is called its bound entry. All remaining variable entries are called free. A formula containing free variable entries is dependent on them (is a function of them), but the bound entries may be “renamed”; for example, the expressions ∃x (x = 2y) and ∃z(z = 2y) denote one and the same thing, but the same cannot be said of ∃x(x =2y) and ∃x(x = 2t). The use of quantifiers reduces the number of free variables in logical expressions and, if the quantifier is not a “dummy” (that is, if it is related to a variable actually entering into the formula), it transforms a three-place predicate into a two-place one, a two-place one into a single-place one, and single-place one into a proposition. The use of quantifiers is codified by special “quantification postulates” (whose addition to propositional calculus essentially implies an expansion of the latter into predicate calculus)—for example, the “Bernays’ postulates”: the axioms A(t)⊃ ∃xA(x) and ∀xA(x) ∃ A(t) and the rules of deduction “if it has been proved that CA(x), then it may be considered also proved that CxA(x)” and “if it has been proved that A(x)⊃ C” then it may be considered also proved that ∃xA(x)⊃ C” (here x does not enter freely into C).

Other kinds of quantifiers may be reduced to the universal and existential quantifiers. For example, in place of the uniqueness quantifier ∃!x (“there exists a unique x such that”) it is possible to write “ordinary” quantifiers, replacing ∃!xA(x) with

xA(x) & ∀yz [A(y) &A(z) ⊃ y = z]

Analogously, quantifiers “bound” to a single-place predicate P(x) —∃xpx) (“there exists an x satisfying the property P and such that”) and ∀x(p)x (“for all x satisfying the property P it is true that”)—can easily be expressed by means of the universal and existential quantifiers and the implication and conjunction operators:

xP(x)A(x) ≡ ∃x[P(x) & A(x)]]

and

xP(x)A(x) ≡ ∀x[P(x)A(x)]

REFERENCES

Kleene, S. C. Vvedenie v metamatematiku. Moscow, 1957. Pages 72–80, 130–38. (Translated from English.)
Church, A. Vvedenie v matematicheskuiu logiku, vol. 1. Moscow, 1960. Pages 42–48. (Translated from English.)

IU. A. GASTEV

quantifier

(logic)
An operator in predicate logic specifying for which values of a variable a formula is true. Universally quantified means "for all values" (written with an inverted A, LaTeX \forall) and existentially quantified means "there exists some value" (written with a reversed E, LaTeX \exists). To be unambiguous, the set to which the values of the variable belong should be specified, though this is often omitted when it is clear from the context (the "universe of discourse"). E.g.

Forall x . P(x) <=> not (Exists x . not P(x))

meaning that any x (in some unspecified set) has property P which is equivalent to saying that there does not exist any x which does not have the property.

If a variable is not quantified then it is a free variable. In logic programming this usually means that it is actually universally quantified.

See also first order logic.
References in periodicals archive ?
At the same time, each of these new inputs from quantifiers [T.sub.j] (j = 1, ..., N) can be represented as a set of inputs [mathematical expression not reproducible] and, by connecting certain knots by identity connections, we can formulate the input-output ratio according to the final discrete graph.
This chapter analyzes how German builds intersective, co-intersective, and propositional quantifiers, among a variety of other topics.
The abstract [F.sub.k] = [lambda]x[[]x = y] in just this open sentence free object variable form cannot be accepted without scruple, because it is not well-formed, containing as it does the free variable "y." (9) The abstract with variable "y" unbound by any particular object quantifier is equivocal with respect to expressing the property of being necessarily identical to every or merely some object, or even exclusively to the object having certain specific properties.
Because the negation of either an existential or universal quantifier which is itself followed by a negation is identical to its opposite, it might at first appear that the diagonal opposites in Lacan's schema mean almost the same thing.
The aggregation weighted vector W is a mapping to membership function Q(r) guided by a monotonically non-decreasing fuzzy linguistic quantifier, Q, repersented as Eqs.
Eli Hirsch's Quantifier Variance and Realism is perhaps the most thorough example of a recent trend in metaphysics that steers away from a traditional substantive view while veering towards neo-Carnapian deflationism.
Definition 9 A Presburger formula is a boolean formula with variables in N that can be written using quantifiers ([there exists], [for all]), boolean operations (and, or, not), and linear (in)equalities in the variables.
Participants read through short vignettes and determined whether sentences containing certain key phrases like gradable adjectives, cardinals, quantifiers, were literally still true even in contexts that favoured a more natural, pragmatic interpretation.
In order to succeed we need to build up a progressive understanding of the relationship between the 'neighborhood' [epsilon] ('closeness') and the index N (location in the sequence of approximations) in defining the limit of a sequence by revealing the details of the complex logical structure underlying this definition (the role played by quantifiers and their order of appearance) and hence encourage the development of an ability to associate an informal statement with its logically structured formal statement in mathematical contexts.