Spectrum of an Operator

Spectrum of an Operator

 

The spectrum of the linear operator T is the set of numbers T for which the operator TʎE, where E is the identity operator, does not have an every where defined bounded inverse. The concept of the spectrum of an operator is a generalization of the concept of the set of eigenvalues of a matrix and is especially important for self-adjoint and unitary operators.

References in periodicals archive ?
Berberian, The Weyl spectrum of an operator, Indiana Univ.
We shall denote the point spectrum of an operator A by [sigma]p(A).
LIstr atescu, On Weyl's spectrum of an operator I, Rev.

Full browser ?