# Spinor

(redirected from*Spinors*)

Also found in: Dictionary.

## spinor

[′spin·ər] (mathematics)

A vector with two complex components, which undergoes a unitary unimodular transformation when the three-dimensional coordinate system is rotated; it can represent the spin state of a particle of spin ½.

More generally, a spinor of order (or rank)

*n*is an object with 2^{ n }components which transform as products of components of*n*spinors of rank one.A quantity with four complex components which transforms linearly under a Lorentz transformation in such a way that if it is a solution of the Dirac equation in the original Lorentz frame it remains a solution of the Dirac equation in the transformed frame; it is formed from two spinors (definition 1). Also known as Dirac spinor.

## Spinor

a mathematical quantity whose transformation from one coordinate system to another is governed by a special law. Spinors are used for various problems in, for example, quantum mechanics and representations of groups.