Stream Dynamics

Stream Dynamics


the study of the movement of water and detritus in rivers, streams, and canals. The main task of stream dynamics is the study of the movement of water in a channel that is being altered under conditions of continuous interaction of the stream and channel. The channel directs the stream, forming a distribution of velocities in its various parts (a velocity field), and the stream creates for itself a channel that conforms to its velocity field. In connection with this, stream dynamics studies the kinematic structure of the stream (velocity and pressure distribution and fluctuations, turbulence and the mechanism of turbulent mixing, and the tractive resistance of the stream), the mechanism of suspension and transportation of detritus, the deformation of the stream’s bottom, and the position of the stream (river) in the plan view. Stream dynamics is based on the hydrodynamics of viscous fluid, the theory of the turbulent flow of a fluid, similarity theory, and physical experimentation.

The movement of streams in a curved channel is accompanied by a transverse circulation, because of which the detritus is moved both along the channel and across it, creating complex bottom relief. Theoretical research on streams presents significant difficulties because of the complexity and fluidity of stream flow. Because of this, physical experimentation has acquired great importance, particularly the simulation of channel processes based on similarity theory. At the same time, stream research is also conducted directly under natural conditions (in rivers and channels).

Stream dynamics began to develop as an independent science in the early 20th century on the basis of research on plains rivers for navigation purposes (begun by the Russian engineers V. M. Lokhtin and N. S. Leliavskii) and in connection with the developing hydraulic engineering construction. A great contribution to the creation and development of stream dynamics was made by the Soviet scientists M. A. Velikanov (who established the theoretical basis of the science), V. M. Makkaveev, V. N. Goncharov, and N. I. Makkaveev.

A study of stream patterns made possible not only the prediction of channel deformations but also their control. Thus, special hydraulic-engineering works may control the channels of rivers by creating conditions that promote an increase in the river’s depth to a level best suited for normal navigation. The forecasting of channel alterations has acquired particular importance in connection with the construction of hydraulic-engineering works. The most important practical concerns of stream dynamics include the precipitation of detritus in channels and settling tanks, the silting-up of reservoirs, the washing out of the bottom behind hydraulic-engineering works (a drop in the water level in the tailwater of hydraulic power systems), scouring of the river channel when it is constricted by construction (cofferdams, bridges, water intakes, and so on), the development of methods for straightening rivers for navigation purposes, and combating the harmful effect of mud flows.


Velikanov, M. A. Dinamika ruslovykh potokov, 3rd ed., vols. 1-2. Moscow-Leningrad, 1954-55.
Levi, 1.1. Dinamika ruslovykh potokov, 2nd ed. Moscow-Leningrad, 1957.
Goncharov, V. N. Osnovy dinamiki ruslovykh potokov. Leningrad, 1954.
Grishanin, K. V. Dinamika ruslovykh potokov. Leningrad, 1969.
Makkaveev, N. I. Eksperimental’naia. Moscow, 1961.


References in periodicals archive ?
It's a unique experience!" Ice streams are responsible for draining a significant fraction of the ice from the Greenland ice sheet, and the researchers aim to gain new and fundamental information on ice stream dynamics, thereby improving the understanding of how ice streams will contribute to future sea-level change.
The proposed research project will move beyond the traditional paradigm of static river networks by unravelling, For the first time, Physical causes and biogeochemical consequences of stream dynamics. In particular, The project will undertake the following overarching scientific questions: 1) what are the climatic and geomorphic controls on the expansion/contraction of river networks 2) what is the length of temporary streams and what is their impact on catchment-scale biogeochemical processes and stream water quality across scales These challenging issues will be addressed by developing a novel theoretical framework complemented by extensive field observations within four representative sites along a climatic gradient in the eu.
In planning the appropriate response to a flood, we need to consider stream dynamics. A stream that is in balance with its landscape is able to pass water and sediment during small and large flood events, and then regain its natural shape.
Clearly, the origin and quality of this organic matter is of great importance to the understanding of stream dynamics.
The experiment involved researchers from universities and other organisations, as well as CSIRO, covering topics including fire behaviour, atmospheric chemistry, nutrient cycling, hydrology and stream dynamics, vegetation, insects and spiders, and all vertebrate groups,' Dr Andersen said.
The EGRIP international project hopes to gain new and fundamental information on ice stream dynamics, thereby improving the understanding of how ice streams will contribute to future sea-level change.
Knowing The Strong Role That Solid Waste Planning Has Played In Washtenaw County, It Is Imperative That The Selected Consultant Identify Potential Locations For A New Facility While Taking Into Account The Population And Waste Stream Dynamics As They Relate To Potential Residential And Commercial Recycling Customers.