Tyndall Effect


Also found in: Dictionary, Thesaurus, Medical, Wikipedia.

colloid

colloid (kŏlˈoid) [Gr.,=gluelike], a mixture in which one substance is divided into minute particles (called colloidal particles) and dispersed throughout a second substance. The mixture is also called a colloidal system, colloidal solution, or colloidal dispersion. Familiar colloids include fog, smoke, homogenized milk, and ruby-colored glass.

Colloids, Solutions, and Mixtures

The Scottish chemist Thomas Graham discovered (1860) that certain substances (e.g., glue, gelatin, or starch) could be separated from certain other substances (e.g., sugar or salt) by dialysis. He gave the name colloid to substances that do not diffuse through a semipermeable membrane (e.g., parchment or cellophane) and the name crystalloid to those which do diffuse and which are therefore in true solution. Colloidal particles are larger than molecules but too small to be observed directly with a microscope; however, their shape and size can be determined by electron microscopy. In a true solution the particles of dissolved substance are of molecular size and are thus smaller than colloidal particles; in a coarse mixture (e.g., a suspension) the particles are much larger than colloidal particles. Although there are no precise boundaries of size between the particles in mixtures, colloids, or solutions, colloidal particles are usually on the order of 10−7 to 10−5 cm in size.

Classification of Colloids

One way of classifying colloids is to group them according to the phase (solid, liquid, or gas) of the dispersed substance and of the medium of dispersion. A gas may be dispersed in a liquid to form a foam (e.g., shaving lather or beaten egg white) or in a solid to form a solid foam (e.g., styrofoam or marshmallow). A liquid may be dispersed in a gas to form an aerosol (e.g., fog or aerosol spray), in another liquid to form an emulsion (e.g., homogenized milk or mayonnaise), or in a solid to form a gel (e.g., jellies or cheese). A solid may be dispersed in a gas to form a solid aerosol (e.g., dust or smoke in air), in a liquid to form a sol (e.g., ink or muddy water), or in a solid to form a solid sol (e.g., certain alloys).

A further distinction is often made in the case of a dispersed solid. In some cases (e.g., a dispersion of sulfur in water) the colloidal particles have the same internal structure as a bulk of the solid. In other cases (e.g., a dispersion of soap in water) the particles are an aggregate of small molecules and do not correspond to any particular solid structure. In still other cases (e.g., a dispersion of a protein in water) the particles are actually very large single molecules. A different distinction, usually made when the dispersing medium is a liquid, is between lyophilic and lyophobic systems. The particles in a lyophilic system have a great affinity for the solvent, and are readily solvated (combined, chemically or physically, with the solvent) and dispersed, even at high concentrations. In a lyophobic system the particles resist solvation and dispersion in the solvent, and the concentration of particles is usually relatively low.

Formation of Colloids

There are two basic methods of forming a colloid: reduction of larger particles to colloidal size, and condensation of smaller particles (e.g., molecules) into colloidal particles. Some substances (e.g., gelatin or glue) are easily dispersed (in the proper solvent) to form a colloid; this spontaneous dispersion is called peptization. A metal can be dispersed by evaporating it in an electric arc; if the electrodes are immersed in water, colloidal particles of the metal form as the metal vapor cools. A solid (e.g., paint pigment) can be reduced to colloidal particles in a colloid mill, a mechanical device that uses a shearing force to break apart the larger particles. An emulsion is often prepared by homogenization, usually with the addition of an emulsifying agent. The above methods involve breaking down a larger substance into colloidal particles. Condensation of smaller particles to form a colloid usually involves chemical reactions—typically displacement, hydrolysis, or oxidation and reduction.

Properties of Colloids

One property of colloid systems that distinguishes them from true solutions is that colloidal particles scatter light. If a beam of light, such as that from a flashlight, passes through a colloid, the light is reflected (scattered) by the colloidal particles and the path of the light can therefore be observed. When a beam of light passes through a true solution (e.g., salt in water) there is so little scattering of the light that the path of the light cannot be seen and the small amount of scattered light cannot be detected except by very sensitive instruments. The scattering of light by colloids, known as the Tyndall effect, was first explained by the British physicist John Tyndall. When an ultramicroscope (see microscope) is used to examine a colloid, the colloidal particles appear as tiny points of light in constant motion; this motion, called Brownian movement, helps keep the particles in suspension. Absorption is another characteristic of colloids, since the finely divided colloidal particles have a large surface area exposed. The presence of colloidal particles has little effect on the colligative properties (boiling point, freezing point, etc.) of a solution.

The particles of a colloid selectively absorb ions and acquire an electric charge. All of the particles of a given colloid take on the same charge (either positive or negative) and thus are repelled by one another. If an electric potential is applied to a colloid, the charged colloidal particles move toward the oppositely charged electrode; this migration is called electrophoresis. If the charge on the particles is neutralized, they may precipitate out of the suspension. A colloid may be precipitated by adding another colloid with oppositely charged particles; the particles are attracted to one another, coagulate, and precipitate out. Addition of soluble ions may precipitate a colloid; the ions in seawater precipitate the colloidal silt dispersed in river water, forming a delta. A method developed by F. G. Cottrell reduces air pollution by removing colloidal particles (e.g., smoke, dust, and fly ash) from exhaust gases with electric precipitators. Particles in a lyophobic system are readily coagulated and precipitated, and the system cannot easily be restored to its colloidal state. A lyophilic colloid does not readily precipitate and can usually be restored by the addition of solvent.

Thixotropy is a property exhibited by certain gels (semisolid, jellylike colloids). A thixotropic gel appears to be solid and maintains a shape of its own until it is subjected to a shearing (lateral) force or some other disturbance, such as shaking. It then acts as a sol (a semifluid colloid) and flows freely. Thixotropic behavior is reversible, and when allowed to stand undisturbed the sol slowly reverts to a gel. Common thixotropic gels include oil well drilling mud, certain paints and printing inks, and certain clays. Quick clay, which is thixotropic, has caused landslides in parts of Scandinavia and Canada.

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Tyndall Effect

 

the scattering of light that occurs when a light beam passes through an optically inhomogeneous medium. The Tyndall effect is usually observed as a luminous cone, which is called a Tyndall cone and is visible against a dark background. The effect is characteristic of colloidal systems, such as metalsols, thin latices, and tobacco smoke. The particles and dispersion medium in these systems have different refractive indexes. The Tyndall effect forms the basis for a number of optical techniques for determining the size, shape, and concentration of colloidal particles and macromolecules (see, for example, NEPHELOMETRY). The effect is named after its discoverer, J. Tyndall.

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.

Tyndall effect

[′tind·əl i‚fekt]
(optics)
Visible scattering of light along the path of a beam of light as it passes through a system containing discontinuities, such as the surfaces of colloidal particles in a colloidal solution.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
Caption: FIGURE 4: Dermoscopy of a lesion showed gray-blue to bluish small dots over a bluish background, corresponding to melanin-laden melanophages in deeper dermis (Tyndall effect).
The bluish hue may represent both traces of hemosiderin associated with vascular injury and visual distortion from light refraction to the filler through the skin (Tyndall effect).
Tyndall effect is the manifestation of an optical effect called light scattering by particles.