Wave Packet

(redirected from Wave packets)

wave packet

[′wāv ‚pak·ət]
In wave phenomena, a superposition of waves of differing lengths, so phased that the resultant amplitude is negligibly small except in a limited portion of space whose dimensions are the dimensions of the packet. Also known as packet.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Wave Packet


a propagating wave field that occupies a finite region of space at any given moment. Wave packets may occur with waves of any nature (sound, electromagnetic, and so on). Such a wave“surge” in a localized region of space may be resolved into the sum of monochromatic waves whose frequencies lie within definite limits. However, the term“wave packet” is generally used in connection with quantum mechanics.

In quantum mechanics, a plane, monochromatic de Broglie wave—that is, a wave with definite values of frequency and wavelength and occupying the entire space—corresponds to each state of a particle with certain values of momentum and energy. The coordinates of a particle having precisely defined momentum are completely indeterminate—the particle may be found with equal probability at any point of the space, since this probability is proportionate to the square of the amplitude of the de Broglie wave. This corresponds with the uncertainty principle, which states that the more definite is the particle’s momentum, the less definite is its coordinate. On the other hand, if the particle is localized in any limited region of space, its momentum no longer has a precisely defined magnitude—there is a certain spread in its possible values. The state of such a particle is represented by the sum (more accurately, by the integral, because the momentum of a free particle varies continually) of monochromatic waves with frequencies corresponding to the spread of possible values of momentum. The superposition of a group of such waves that have almost the same direction of propagation but differ slightly in frequency is the wave packet. This means that the resultant wave will be different from zero only in a certain limited region of space; in quantum mechanics it cor-responds to the fact that the probability of finding the particle in the region occupied by the wave packet is large, whereas outside this region it is practically zero.

The velocity of the wave packet (more accurately, of its center) is found to coincide with the mechanical velocity of the particle. From this it can be deduced that the wave packet describes a freely moving particle whose possible location at any given time is limited to a certain small region of coordinates (that is, the wave packet becomes the wave function of such a particle).

With the passage of time, the wave packet widens and becomes diffuse (see Figure 1). This results from the fact that the monochromatic waves forming the packet and having different frequencies propagate with different velocities even in a vacuum: some waves move faster, others more slowly, and the wave packet is deformed. This diffusion of the wave packet corresponds to the fact that the region of possible localization of the particle increases.

Figure 1. Diffusion of a wave packet with the passage of time t. At the initial moment the particle is described by wave packet Ψ0 at time t, by wave packet Ψt;ǀΨ0ǀ2 and ǀΨt2 define the probabilities of finding the particle at a certain point x; v is the velocity of the center of the packet, coinciding with the particle’s mechanical velocity. The areas encompassed by the curves and the x-axis are equal and give the total probability of finding the particle in the space at a given time.

If the particle is not free but is located near some attracting center—for example, an electron in the Coulomb field of the proton in a hydrogen atom—such a bound particle will be associated with standing waves, which retain their stability. In this case the shape of the wave packet remains invariable, which corresponds to the stationary state of the system. In a case when the system jumps into a new state owing to external influences (for example, when a particle strikes an atom), the wave packet instantly restructures itself in conformity with transition; this is called a reduction of the wave packet. Such a reduction would lead to contradictions wifli the requirements of the theory of relativity if de Broglie’s waves were ordinary material waves, such as those of the type of electromagnetic waves. Actually, in such a case the reduction of the wave packet would signify the existence of super-light (instant) signals. The probability interpretation of de Broglie waves eliminates this difficulty.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
References in periodicals archive ?
This pattern can be characterized as a "recurrent Rossby wave pattern" (RRWP), arising from multiple transient synoptic-scale wave packets. Hereby the word "recurrent" implies that during such RRWP periods, individual troughs and ridges forming these wave packets repeatedly amplify in the same geographical regions.
"In these simulations, jerks are caused by the arrival of localized Alfven wave packets radiated from sudden buoyancy releases inside the core," Aubert and Finlay's (https://www.nature.com/articles/s41561-019-0355-1) research paper read .
In the year 1979, physicists Michael Berry at the University of Bristol in the United Kingdom, and Nandor Balazs of the State University of New York, Stony Brook discovered that the Schrodinger equation, which is essentially force free and hence appropriate for finding a solution to self-bending light, does give solutions in the form of nonspreading "Airy" wave packets that freely accelerate even in the absence of any external potential.
When waves interfere they generate wave packets. These wave packets behave like the inhomogeneities of the medium.
However, the wave packets will also spread out as time progresses, and this means that the position becomes more uncertain.
The time of wave packet was t and two wave packets 2t.
The velocity of wave packets for a finite wave train can be interpreted from the group velocity dispersion curves; they are therefore useful to calculate the travel times of wave signals for use in the long-range testing [19].
The peak amplitude of the A0 and S0 wave packets is obtained to calculate the amplitude ratio between the two modes.
Asks the stand from under analysis the basis only to use the small wave packet the nature theorem one, and therefore suits in all small wave packets, also is any small wave packet all has the same result and the natural order and the frequency order are different, moreover with produces the small wave packet by the theorem one determination small wave packet frequency order confused situation the criterion function to have nothing to do with; In other words, the small wave packet frequency order all is same.
"Back during the 1960s, it was shown that coherent parts of turbulent fluctuations inside jets are connected to instability wave packets, which are linked to noise radiation," says Joseph W Nichols, an assistant professor of aerospace engineering and mechanics at the University of Minnesota.
Among his topics are re-inflating the conception of scientific representation, gauge gravity and the unification of natural forces, spontaneous symmetry breaking and chance in a classical world, a possible unified understanding of probabilistic objects, and the Aharonov-Bohm effect and the reality of wave packets. ([umlaut] Ringgold, Inc., Portland, OR)