Encyclopedia

Moment of Force

Also found in: Wikipedia.
(redirected from Moment (physics))

moment of force

[′mō·mənt əv ′fȯrs]
(mechanics)
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Moment of Force

 

a quantity that characterizes the rotational effect of a force acting on a rigid body; the moment of a force is a fundamental concept of mechanics. A distinction is made between the moment of a force about a center (a point) and about an axis.

The moment of a force about a center O is a vector quantity. The magnitude of the moment is MO = Fh, where F is the force and h is the arm, that is, the length of the perpendicular drawn from O to the line of action of the force (see Figure 1); the vector MO is perpendicular to the plane that contains the center O and the force F and is pointed in a direction such that the rotation caused by the force appears counterclockwise (in a right-handed coordinate system). The moment of a force is expressed as a vector product, by the equation MO = [rF], where r is the radius vector drawn from O to the point of application

Figure 1

of the force. The dimensions of the moment of a force are L2MT2, and the units of measurement are newton ⋅ meters (n ⋅ m), dyne ⋅ cm (1 N ⋅ m = 107 dyne ⋅ cm), or kilogram-force ⋅ meters.

The moment of a force about an axis is a scalar quantity equal to the projection, on this axis, of the moment of the force about any point O of the axis or equal to the numerical value of the moment of the projection Fxy of the force F on the xy-plane, which is perpendicular to the z-axis, taken with respect to the point of intersection of the axis with the plane. In other words,

MZ = M0 cos γ = ± Fxyh1

The plus sign in this expression is selected when the rotation caused by the force F is counterclockwise when viewed from the positive end of the z-axis (also in a right-handed system). The moments of a force about the x-, y-, and z-axes can also be calculated from the formulas

Mx = YFzZFyMy = zFxxFz

where Fx, Fy, and Fz are the projections of the force F on the axes; x,y, and z are the coordinates of the point A of application of the force.

If a system of forces has a resultant, then the moment of the system is calculated according to Varignon’s theorem.

S. M. TARG

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Mentioned in
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.