Church integer

Church integer

(theory)
A representation of integers as functions invented by Alonzo Church, inventor of lambda-calculus. The integer N is represented as a higher-order function which applies a given function N times to a given expression. In the pure lambda-calculus there are no constants but numbers can be represented by Church integers.

A Haskell function to return a given Church integer could be written:

church n = c where c f x = if n == 0 then x else c' f (f x) where c' = church (n-1)

A function to turn a Church integer into an ordinary integer:

unchurch c = c (+1) 0

See also von Neumann integer.
This article is provided by FOLDOC - Free Online Dictionary of Computing (foldoc.org)
Mentioned in
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.