Marine Engine

marine engine

[mə′rēn ′en·jən]
(naval architecture)
An engine that propels a water-borne vessel.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.

Marine engine

An engine that propels a waterborne vessel. In all except the smallest boats, the engine is but part of an integrated power plant, which includes auxiliary machinery for propulsion engine support, ship services, and cargo, trade, or mission services. Marine engines in common use are diesel engines, steam turbines, and gas turbines. Gasoline engines are widely used in pleasure craft. See Internal combustion engine, Marine machinery

Diesel engines of all types and power outputs are in use for propulsion of most merchant ships, most service and utility craft, most naval auxiliary vessels, and most smaller surface warships and shorter-range submarines. The diesel engines most commonly used fall into either a low-speed category or the medium- and high-speed category. Low-speed engines are generally intended for the direct drive of propellers without any speed reduction, and therefore are restricted to a range of rotative speeds for which efficient propellers can be designed, generally below 300 revolutions per minute (rpm). The largest engines are rated for power output of over 5000 kW (almost 7500 horsepower) per cylinder at about 100 rpm. Because of their higher rotative speeds, medium- and high-speed engines drive propellers through speed-reduction gears, but they are directly connected for driving generators in diesel-electric installations. Large medium-speed engines are capable of over 1500 kW (2000 hp) per cylinder at about 400 rpm. The upper limit of the medium-speed category, and the start of the high-speed category, is generally placed in the range of 900–1200 rpm. See Diesel engine

While steam-turbine plants cannot achieve the thermal efficiency of diesel engines, steam turbines of moderately high power levels (above about 7500 kW or 10,000 hp) offer efficient energy conversion from steam, which can in turn be produced by combustion of low-quality fuel oil, coal, or natural gas in boilers, or from a nuclear reactor. For high efficiency, high turbine speeds are required, typically 3000–10,000 rpm, with reduction gearing or electric drive used to achieve low propeller rotative speeds. The combination of turbine and reduction gear or electric drive has usually proven robust and durable, so that most oil-fueled steamships currently in service are held over from an earlier era. Others, more recently built, are capitalizing on the availability, in their trade, of a fuel unsuitable for diesel engines. See Steam turbine

Aircraft-derivative gas turbines have become the dominant type of propulsion engine for medium-sized surface warships, including frigates, destroyers, cruisers, and small aircraft carriers. In all cases the turbines are multishaft, simple-cycle engines, with the power turbine geared to the propeller. In some installations, two to four turbines are the sole means of propulsion; in other cases, one or two turbines provide high-speed propulsion, while diesel engines or smaller gas turbines are used for cruising speeds. Factors favoring the aircraft-derivative gas turbine in this application are low weight, compact dimensions, high power, rapid start and response, standardization of components, and maintenance by replacement. See Gas turbine

In the electric drive arrangement, the engine is directly coupled to a generator, and the electricity produced drives an electric motor, which is most often of sufficiently low rotative speed to be directly connected to the propeller shaft. Any number of engine-generator sets may be connected to drive one or more propulsion motors. Electric drive has been used with engines of all types, including low-speed diesels. Advantages of electric drive include flexibility of machinery arrangement, elimination of gear noise, high propeller torque at low speed, and inherent reversing capability. In ships with high electric requirements for cargo, mission, or trade services—for example, passenger ships, tankers with electric-motor-driven cargo pumps, or warships with laser weapons—there is an advantage in integrating propulsion and ship service support through a common electric distribution system. However, electric drive is usually heavier, higher in initial cost, and less efficient than direct or geared drive.

McGraw-Hill Concise Encyclopedia of Engineering. © 2002 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Marine Engine

 

a component of a ship’s power supply system. Marine engines are classified as main engines, used to propel the ship, or auxiliary engines, which drive electric generators, pumps, fans, and other equipment. They may be internal-combustion engines, steam turbines, or gas turbines. Marine engines are characterized by long service lives, the ability to reverse, moderate labor costs for maintenance without the need to remove the engines for servicing, and the ability to operate primarily on fuel oils. There are no severe design restrictions on the size or weight of marine engines.

Diesels are the most economical marine engines and the type most commonly installed. Slow-, medium-, and high-speed diesel engines with superchargers are used in freighters, commercial fishing vessels, and auxiliary vessels. Slow-speed internal-combustion engines are used as main engines on various types of vessels. They have power outputs from 2.2 to 35 megawatts (MW), five to 12 cylinders, an effective specific fuel consumption of 210–215 g per kilowatt-hour (g/kW-hr), and crankshaft speeds of 103–225 rpm. Medium-speed internal-combustion engines serve primarily as main engines in medium-sized vessels. They have outputs up to 13.2 MW, six to 20 cylinders, an effective specific fuel consumption of 205–210 g/kW-hr, and crankshaft speeds of 300–500 rpm. High-speed internal-combustion engines are used as main engines in small boats and as auxiliary engines in ships of all types. They have outputs up to 2 MW, 12 to 16 cylinders, an effective specific fuel consumption of 215–230 g/kW-hr, and crankshaft speeds in excess of 500 rpm.

Steam turbines are less common than internal-combustion engines. They are primarily used as main engines on large tankers, container ships, gas carriers, and nuclear-powered ships; they are also used as auxiliary engines. Steam turbines develop up to 80 MW of power, have an effective specific fuel consumption of 260–300 g/kW-hr, and operate at 3,000–4,000 rpm.

Marine gas turbines are used primarily as main engines on naval vessels, hydrofoils, and marine ground-effect machines. Conventional displacement vessels powered by gas turbines operate in the USSR, the USA, and Australia. These ships use industrial gas turbines modified to burn fuel oils and redesigned to allow onboard maintenance. Aviation gas turbines with reduction gearing are also used. Gas turbines used in cargo ships develop 0.07–14.5 MW of power, have effective specific fuel consumptions of 285 to 330 g/kW-hr, and operate at 5,000–8,000 rpm. Gas turbines currently under development generate 6–37 MW of power and are intended for installation as main engines on large roll-on, roll-off ships, ferries, and vessels designed to operate in ice conditions. They are also used as auxiliary engines.

REFERENCES

Petrovskii, N. V. Sudovye dvigateli vnutrennego sgoraniia i ikh ekspluatatsiia. Moscow, 1966.
Gavrilov, V. S., S. V. Kamkin, and V. P. Shmelev. Tekhnicheskaia ekspluatatsiia sudovykh dizel’nykh ustanovok. Moscow, 1967.
Plaksionov, N. P., and A. G. Verete. Sudovye turbinnye ustanovki. Moscow, 1973.
Spravochnik sudovogo mekhanika, vols. 1–2. Edited by L. L. Gritsai. Moscow, 1973–74.

G. I. BELOZERSKII and V. V. MASLOV

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Mentioned in
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.