coalesced sum

coalesced sum

(theory)
(Or "smash sum") In domain theory, the coalesced sum of domains A and B, A (+) B, contains all the non-bottom elements of both domains, tagged to show which part of the sum they come from, and a new bottom element.

D (+) E = { bottom(D(+)E) } U { (0,d) | d in D, d /= bottom(D) } U { (1,e) | e in E, e /= bottom(E) }

The bottoms of the constituent domains are coalesced into a single bottom in the sum. This may be generalised to any number of domains.

The ordering is

bottom(D(+)E) <= v For all v in D(+)E

(i,v1) <= (j,v2) iff i = j & v1 <= v2

"<=" is usually written as LaTeX \sqsubseteq and "(+)" as LaTeX \oplus - a "+" in a circle.
This article is provided by FOLDOC - Free Online Dictionary of Computing (foldoc.org)
Mentioned in
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.