air navigation

Also found in: Dictionary, Thesaurus, Legal, Wikipedia.

air navigation

air navigation, science and technology of determining the position of an aircraft with respect to the surface of the earth and accurately maintaining a desired course (see navigation).

Visual and Instrument Flight

The simplest and least sophisticated way to keep track of position, course, and speed is to use pilotage, a method in which landmarks are noted and compared with an aeronautical chart. Whether these landmarks are observed visually or on radar, this technique of air navigation is usually called flying under visual flight regulations (VFR). These establish the minimum weather conditions under which pilotage is permissible.

Pilotage is not satisfactory for long trips, especially over water or terrain lacking distinctive features. In these cases, or when weather conditions do not permit navigation by visual reference, planes must fly according to instrument flight regulations (IFR), which require that the aircraft be equipped with the necessary position-finding instruments and that the pilot be trained in operating those instruments. Also required under IFR is the filing of a flight plan with air traffic control authorities at the departure point. The aircraft is then cleared for a given course and a given altitude. Air traffic controllers monitor the craft until it reaches its destination.

Aircraft Instruments

Light aircraft, flown by pilotage, typically have a simple set of navigational instruments, including an airspeed indicator (see pitot static system), an aneroid altimeter, and a magnetic compass. For supersonic and hypersonic aircraft the airspeed indicator is altered to show the airspeed as a Mach number, which is the ratio of the speed of an aircraft to the speed of sound. Advanced aircraft also use electronic systems to give the pilot highly accurate positional information for use during landing. The Instrument Landing System enables an airplane to navigate through clouds or darkness to an airport's runway; the Microwave Landing System, installed in U.S. airports beginning in 1988, is capable of landing the plane automatically, although the pilot always has the option of overriding manually.

Other navigational aids include the radio altimeter, a radar device that indicates the distance of the plane from the ground; the ground-speed indicator, which operates by measuring the Doppler shift in a radio wave reflected from the ground; and, in commercial airliners, the flight management computer, which can display altitude, speed, course, wind conditions, and route information, as well as monitor the airplane's progress through the airway. Other similar systems use inertial devices such as free-swinging pendulums and gyroscopes as references in determining position. These automated and semiautomated procedures free the pilot from many of the activities previously necessary for navigation and thus allow the pilot to concentrate on actually flying the aircraft. Another device which is useful in this way is the automatic pilot, which interprets data on direction, speed, attitude, and altitude to maintain an aircraft in straight, level flight on a given course at a given speed.

Airways and Radio Ranges

Basic to air traffic control are special air routes called airways. Airways are defined on charts and are provided with radio ranges, devices that allow the pilot whose craft has a suitable receiver to determine the plane's bearing and distance from a fixed location. The most common beacon is a very high frequency omnidirectional radio beacon, which emits a signal that varies according to the direction in which it is transmitted. Using a special receiver, an air navigator can obtain an accurate bearing on the transmitter and, using distance-measuring equipment (DME), distance from it as well.

The system of radio ranges around the United States is often called the VORTAC system. For long distances other electronic navigation systems have been developed: Omega, accurate to about two miles (3 km); Loran-C, accurate to within .25 mi (.4 km) but available only in the United States; and the Global Positioning System (GPS), a network of 24 satellites that is accurate to within a few yards and is making radio ranging obsolete.


See J. Elliott and G. Guerny, Pilot's Handbook of Navigation (1977).

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Navigation, Air


the science of the methods and equipment for guiding aircraft (airplanes, helicopters, missiles, and so on); the aggregate of operations used by ground control or on-board facilities to determine navigational elements, and also their use to guide the aircraft. The principles of air navigation originated in sea navigation, which was developed in ancient times. In particular, the method of the magnetic compass and nautical astronomy were borrowed from it.

Air navigation ensures that an aircraft is guided along a trajectory determined by the flight route and profile, according to a prescribed plan that regulates the flight conditions from takeoff to landing at a prescribed time. In addition, air navigation solves particular navigation problems, such as the maintenance of prescribed distances and time intervals between aircraft on routes with dense air traffic or upon leaving a route for a landing approach, the prevention of collisions of airplanes with terrain obstacles (such as mountains), and the convergence of two aircraft in flight (for example, a rendezvous with a tanker for refueling). When a flight is carried out according to a predetermined route and plan, the task of air navigation, in contrast to pilotage, reduces primarily to the acquisition of continuous or periodic information on the current navigational elements of the translational motion of the center of mass of the aircraft with respect to a coordinate system correlated to the surface of the earth.

Various types of equipment are used to determine the navigational elements (including course, drift angle, course angle, airspeed and ground speed, altitude, and the coordinates of the aircraft’s location). The equipment is divided into four main groups, according to the primary source of navigational information as follows.

(1) Geotechnical devices, which make possible determination of the relative altitude of flight, the magnetic course, and the location of the aircraft by measuring various parameters of the earth’s geophysical fields (such as the magnetic and gravitational fields). Such equipment includes altimeters, devices for measuring airspeed and ground speed, magnetic and gyromagnetic compasses, directional gyroscopes, optical sights, and inertial navigation systems.

(2) Radio aids, which make possible determination of the true altitude, ground speed, and location of an aircraft by measuring various parameters of the electromagnetic field on the basis of radio signals from special transmitters. Such aids include radio altimeters, radio beacons, radio compasses, and radio navigation systems.

(3) Astronomical equipment, which makes possible determination of the course and location of an aircraft. This includes astrocompasses, sextants, and stellar trackers.

(4) Illumination devices, which are intended to facilitate the landing of aircraft under complex weather conditions and at night, and also to facilitate orientation (beacons).

Since advantages and shortcomings are inherent in each group of technical navigational aids, aids that use various principles are combined as sensors to form unified integrated systems to ensure the accurate flight of an aircraft along a prescribed route under any weather conditions. In such systems the main navigation problems are solved by means of analog or digital computers, and a flight plan is drawn up (including such factors as the coordinates of the points on the route, the altitudes and speeds of flyover of points, and the coordinates of radio navigation systems). Integrated navigation systems that are linked to an autopilot can accomplish automatic flight over the entire route, and also a landing approach, even when the surface of the earth cannot be seen. The integrated navigation system usually determines the position of the aircraft on the basis of three coordinates: two are the projections of the aircraft’s center of mass onto a horizontal plane (longitude and latitude), and one is the altitude. To orient an aircraft it is sufficient to know the two coordinates in the horizontal plane. The flight route is monitored on the basis of the route line, which is determined by a projection of the ground speed vector. This vector is found by adding the measured vectors of airspeed (the speed of the aircraft with respect to the air) and the speed of movement of the air with respect to the surface of the earth. The altitude is measured with an altimeter.

Various methods are used to determine the instantaneous coordinates of the aircraft’s position in flight. The three main methods are as follows: (1) dead reckoning, which is based on determination of the lines (surfaces) of the aircraft’s position by discrete or continuous summation of its measured velocity or acceleration over time; (2) the positional method (position lines), which is used for direct determination of the position lines (surfaces) of an aircraft without taking into consideration the distance it has traveled, by finding the coordinates of the aircraft’s position with respect to known ground reference points or heavenly bodies; (3) the comparative scanning method (orientation), which is used to determine an aircraft’s location either by comparing the actually observed picture of the terrain according to identified ground reference points (including visual, radar, and magnetic references) with a geographic map or standard model of the terrain or by comparing a section of the sky with a star chart. The specific characteristics of the guidance of various types of aircraft, and also the class and function of the aircraft, the regions where the craft are used, and the nature of the route, determine the composition of integrated air navigation systems. The equipment and methods to be used in air navigation are selected in accordance with a plan drawn up in advance by the navigator.

The necessity of ensuring the greatest possible safety of air traffic in spite of its increasing density, the growth in the number and length of air routes, and the further increase in the flying speeds of aircraft has led to the development and introduction of automatic integrated systems for air navigation and air traffic control.


Spravochnik aviatsionnogo shturmana. Edited by V. I. Sokolov. Moscow, 1957.
Kirst, M. A. Navigatsionnaia kibernetika poleta. Moscow, 1971.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.

air navigation

[¦er ‚nav·ə′gā·shən]
The process of directing and monitoring the progress of an aircraft between selected geographic points or with respect to some predetermined plan. Also known as avigation.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
He said dans, as an independent Air Navigation Services Provider (ANSP), will continue investing in technology and hiring competent people for the air traffic management in order to keep up the unblemished reputation of Dubai in the civil aviation industry.
He was also responsible for the establishment of Research and Development Wing of Air Navigation Services.
The president of the Air Navigation Commission of ICAO, Farid Zizi, also added that their Global Air Navigation Plan (GANP) has set goals, including an avionics roadmap that will take 25 years of planning but no guarantee of implementation.
Air navigation service providers face a period of significant change in the years ahead, and Martin's proven intention to work closely with employees, customers and stakeholders makes him the right choice to lead the company!' Martin Rolfe said: "NATS is such a capable organisation, it will be an honour to lead the company into the next phase of its development.
Chaired by director of air navigation Ali Ahmed Mohammed, the meeting was attended by 90 participants from 13 countries, including Middle East member states of the International Civil Aviation Organisation (ICAO), non-Middle Eastern states and seven international organisations from the aviation industry.
The base unit rate of the overflight fee will be reduced from EUR 37.53 to EUR 30.99 through changes to the ordinance on fees for using airports and air navigation service in Bulgaria.
Air traffic in Dubai came to standstill for 55 minutes from 3:00 to 3:55 today as a result of malpractices of some members of the public who flew recreational unmanned aerial vehicles (UAV) in the air navigation passages of planes.
In our story dated December 10, 2014A read the headline as "Czech Air Navigation Services awards air traffic control software development dealA " and not "Czech Air Navigation Services launches tender for air traffic control software development".
Summary: The renewal and extension of the air navigation aid equipment at the new airport terminals at Muscat and Salalah, and the installation of air navigation systems at the new regional airports in Sohar, Ras Al Hadd,
Flight control in the air space above Kosovo has been performed by the Hungarian air navigation service, HungaroControl, since 2011 and this authority will hereafter be assisted by their Macedonian colleagues from MNAV.
From 8 to 17 March, Malaysian aircraft movement was not registered in Kyrgyzstan, press secretary of the Ministry of Transport and Communications Kylychbek Dosumbetov said referring to the Kyrgyz Air Navigation.
The EBRD is providing a E11.15 million loan to the (FYR) Macedonian Air Navigation Service Provider (M-NAV) for the modernisation and upgrade of the company's air navigation equipment.

Full browser ?