anatomy

(redirected from anatomic)
Also found in: Dictionary, Thesaurus, Medical.

anatomy

anatomy (ənătˈəmē), branch of biology concerned with the study of body structure of various organisms, including humans. Comparative anatomy is concerned with the structural differences of plant and animal forms. The study of similarities and differences in anatomical structures forms the basis for classification of both plants and animals. Embryology (see embryo) deals with developing plants or animals until hatching or birth (or germination, in plants); cell biology covers the internal anatomy of the cell, while histology is concerned with the study of aggregates of similarly specialized cells, called tissues. Related to anatomy is morphology, which involves comparative study of the corresponding organs in humans and animals. There are four major types of tissue present in the human body: epithelial tissue (see epithelium), muscular tissue (see muscle), connective tissue, and nervous tissue (see nervous system). Human anatomy is often studied by considering the individual systems that are composed of groups of tissues and organs; such systems include the skeletal system (see skeleton), muscular system, cutaneous system (see skin), circulatory system (including the lymphatic system), respiratory system (see respiration), digestive system, reproductive system, urinary system, and endocrine system. Little was known about human anatomy in ancient times because dissection, even of corpses, was widely forbidden. In the 2d cent., Galen, largely on the basis of animal dissection, made valuable contributions to the field. His work remained authoritative until the 14th and 15th cent., when a limited number of cadavers were made available to the medical schools. A better understanding of the science was soon reflected in the discoveries of Vesalius, William Harvey, and John Hunter. Various modern technologies have significantly refined the study of anatomy: X rays, CAT scans, and magnetic resonance imaging (MRI) are only several of the tools used today to obtain clear, accurate representations of the inner human anatomy. In 1994, for the first time, a detailed three-dimensional map of an entire human being (an executed prisoner who volunteered his body) was made available worldwide via the Internet using data from thousands of photographs, CAT scans, and MRIs of tiny cross sections of the body.

Bibliography

See H. Gray, Gray's Anatomy (1987).

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Anatomy

 

the science of the forms and structures of separate organs, systems, and the total organism; a branch of morphology. Two branches of anatomy are distinguished: animal anatomy (zootomy), which includes human anatomy (anthropotomy), and plant anatomy. The term “anatomy” is usually used to mean “anthropotomy.” The principal method used in the study of anatomy is dissection. Comparative animal anatomy is the study of the similarities and differences in animal structures. This study helps to clarify the kinship bonds between various groups of animals, as well as their origins in the process of evolution.

Human anatomy Some information about the structure of the human body was obtained in ancient Egypt in connection with the experience of embalming corpses. There was also information on human anatomy in the medical almanac of the Chinese emperor Huang T’i (circa 3000 B.C.). The Indian Vedas (first millennium B.C.) indicated that man has 500 muscles, 90 tendons, 900 ligaments, 300 bones, 107 joints, 24 nerves, nine organs, and 400 blood vessels with 700 ramifications. Aristotle, who was one of the founders of the science of anatomy, pointed out in connection with his studies of animal anatomy the difference between tendons and nerves, and he introduced the term “aorta.” Representatives of the Alexandrian medical school (third century B.C.) performed autopsies on corpses and vivisections of criminals condemned to death. They discovered the diaphragm, studied the skeleton and viscera, and made observations about the lymphatics, nerves, heart valves, meninges, and so forth. C. Galen (second century), basing his work on earlier data, often unverified, on dissections of animal corpses, systematized anatomic information. His notions about anatomy served as the basis of medicine for almost 1,500 years because the church in the Middle Ages forbade dissection of corpses and the study of anatomy.

From the ninth through the 12th century anatomy was studied in the Near East by al-Razi (Rhazes), ibn-Rushd (Averroes), and ibn Sina (Avicenna). The flowering of science and art during the Renaissance was accompanied by the development of anatomical research. The basic positions of C. Galen’s teachings were reexamined and the basis was laid for the development of the study of anatomy as it is known today. In the 16th century Leonardo da Vinci, A. Vesalius, G. Fallopio, B. Eustachio, and others obtained the first systematic data on the structures of various organs of the human body. Anatomic investigations facilitated or lay at the base of some of the greatest discoveries in biology. The discovery of blood circulation in the body by W. Harvey in 1628 was a turning point in the study of the circulatory system. The description of the lymphatic vessels of the mesentery by the Italian anatomist G. Aselli aided further development in the study of the lymphatic system. In 1661, M. Malpighi discovered circulation in the capillaries, confirming the unity of the arterial and venous portions of the circulatory channel. A Frenchman named M. F. X. Bichat (18th century) laid the basis for the study of tissues and established the foundations for the development of histology, the science of the microscopic structures of tissues and organs. G. Cuvier correlated numerous data on comparative animal anatomy and paleontology; this made possible the establishment of the principle of correlation in the development of organs. The discovery by M. Schleiden (1838) and T. Schwann (1839) of the cell as the structural unit of tissues in animals and plants was evidence of the unity of the organic world and fostered improvement in the methodology of microscopic anatomy. Cell theory later found broad application in the development of pathological anatomy by R. Virchow. In discovering the law of hereditary transmission of characteristics, G. Mendel (1865) laid the basis for genetic study of the mechanisms of formative processes. The theory of evolution developed by C. Darwin assured the establishment of the evolutionary trend in the science of anatomy as well.

The first data about anatomic research in Russia appeared in the 17th century, when an abridgment ot A. Vesa-lius’ work On the Structure of the Human Body was translated into Russian by E. Slavinetskii. Dissections of corpses were first performed in Russia in the 18th century on the grounds of a Moscow hospital. The first Russian anatomist was A. P. Protasov (18th century). M. I. Shein and later N. M. Ambodik-Maksimovich laid the foundations of Russian anatomical terminology. The most important investigations in Russia in the 18th and 19th centuries were done by P. A. Zagorskii, I. V. Buial’skii, P. F. Lesgaft, D. N. Zernov, M. A. Tikhomirov, and F. A. Stefanis.

As the study of anatomy developed, a number of disciplines were differentiated within it: osteology, the study of bones; syndesmology, the study of the various types of connections between skeletal parts; myology, the study of muscles; splanchnology, the study of the internal organs that make up the digestive, respiratory, and urogenital systems; angiology, the study of the blood circulation and lymphatic systems; neurology, the study of the central and peripheral nervous systems; and esthesiology, the study of the sense organs. An important, rapidly developing branch of anatomy is the study of the structure of the endocrine system. All of these branches constitute systematic, or descriptive, anatomy.

Topographic anatomy, which has practical importance, especially in surgery, is concerned with the description of the locations and forms of organs according to the zones in the human body and with their placement in relation to each other and to adjacent blood vessels and nerves. A school of Russian topographic anatomists was founded by N. I. Pirogov. Comparative anatomy studies the basic stages in the evolution of animal and human organisms. Plastic anatomy studies the characteristics of the external shape of the human body and determines its proportions; it is thus of great importance in the graphic arts. Functional anatomy delineates the mutual connections between the structural features of organs and systems of the human body and the nature of their functioning; it studies the processes in the formation of the shapes and structures of organs during the course of individual development. Establishment of the extremes of individual variation is very important in practical medicine. The conduct of anatomical research in fields of anatomy which border on other sciences (such as biochemistry, biophysics, genetics, and physiology) makes possible the discovery of new principles of the structure of the human body. Pathological anatomy, which studies the structural changes of organs and tissues in the human body which are caused by the development of the pathological process, has been a separate, independent branch of anatomy since the time of G. B. Morgagni (18th century).

Anatomic research in the USSR is conducted by the collectives of more than 100 departments of anatomy in medical institutes and universities. The Institute of Human Morphology studies the living matter of the human organism at various levels of organization. The anatomy of the brain is being intensively studied at the Brain Institute of the Academy of Medical Sciences of the USSR. V. P. Vorob’ev, D. A. Zhdanov, V. N. Ternovskii, M. G. Prives, V. N. Tonkov, V. N. Shevkunenko, I. N. Filimonov, and others have made great contributions to the development of the study of anatomy in the USSR. Since 1922 anatomists in the USSR have been united in the All-Union Scientific Society of Anatomists, Histologists, and Embryologists. The anatomic works which are best known outside the USSR are those of C. M. Goss and H. F. Bennet (USA); A. Delmas (France); and W. Bargmann (German Democratic Republic). Bulgarian anatomists (D. V. Kadanov, G. P. Gylybov, and others) are conducting neuromorphologic investigations. In Hungary certain aspects of the functional anatomy of the lymphatic system are being developed (J. Rusznyák) and a complex study of the structures of the nervous and endocrine systems is being conducted (F. Kiss, J. Szentágotai). Anthropologic studies are being done in the Democratic Republic of Vietnam (Do Xuan Hop).

In addition to autopsy, anatomic research makes much use of morphometry, cinematography, X ray, and various methods of histologic and biochemical analysis.

An international organization, the International Anatomical Congress, has been holding international federated congresses since 1905. The national associations of anatomists of a number of countries also organize and conduct conventions, conferences, and symposia. The most popular are the conventions of anatomists, histologists, and embryologists in the USSR, of the anatomic society in the German Democratic Republic, and of anatomists and histologists in Bulgaria.

Results of anatomic research are published in the journals Arkhiv anatomii, gistologii i embriologii (Archives of Anatomy, Histology, and Embryology; Moscow-Leningrad, since 1916), Anatomischer Anzeiger (The Anatomical Informer; Jena, since 1886), Acta Anatomica (Basel, since 1945), Anatomical Record (Philadelphia, since 1906), American Journal of Anatomy (Baltimore, since 1901), and Folia Morphologica (Warsaw, since 1929).

REFERENCES

Gerlovin, E. Sh. “O rabote Vsesoiuznogo nauchnogo obshchestva anatomov, gistologov i embriologov v 1955–1958.” Arkhiv anatomii, gistologii i embriologii, 1959, vol. 37, issue 10.
Zhdanov, D. A. “50 let sovetskoi anatomii i meditsina.” Arkhiv anatomii, gistologii i embriologii, 1967, no. 53.
Tonkov, V. N. Uchebnik normal’noi anatomii cheloveka, 6th ed. Leningrad, 1962.

IU. I. DENISOV-NIKOL’SKII

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.

anatomy

[ə′nad·ə·mē]
(biology)
A branch of morphology dealing with the structure of animals and plants.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.

anatomy

1. the science concerned with the physical structure of animals and plants
2. the physical structure of an animal or plant or any of its parts
3. a book or treatise on this subject
4. dissection of an animal or plant
http://omni.ac.uk/subject-listing/QS4.html
www.bartleby.com/107
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005
References in periodicals archive ?
With the in-depth understanding of the anatomy of anterolateral ligament, one-stage anatomic reconstruction of the anterior cruciate ligament and anterolateral ligament had been applied in clinic.
However, there is no definite data from earlier studies that any particular tooth shape is more proficient than the other.20-21 This was probably one of the main reasons that all the senior Prosthodontists unanimously preferred semi anatomic teeth over anatomic teeth in this study.
Through the inferior window, the surgeon's non-dominant hand can palpate the inferior border of the anatomic neck, and a retractor can be placed at this level to protect the glenoid and axillary nerve from the saw blade.
This low anatomic success rate may be due to the fact that eyes with complicated RD due to anterior PVR, unstable edge of retinal break, anterior hyaloidal fibrovascular proliferation, retinal incarceration in scleral wound or 3600 giant retinal tear", that required 3600 retinectomy were included in this study.
Use of this frame has contributed to the development of a team approach to understanding anatomic pathology diagnosis and error, as both clinical practitioners and laboratory personnel need to be involved in improvement activities.
The anatomic patella works with the Attune knee femoral components.
An anatomic variation study reviewing the CT scans of 100 Caucasian and 100 Chinese patients found statistically significant difference in the occurrence of CB, PMT and Haller and Onodi cells between the two groups.
OBJECTIVE: Our study aimed to determine the prevalence of anatomic variations_in patients suffering from chronic rhinosinusitis (CRS) and to compare them with normal population.
HOLLYWOOD, FLA.--Paravaginal repair of anterior prolapse with synthetic mesh is associated with a higher anatomic success rate than is xenograft repair; both of these interventions were more successful than standard colporrhaphy, based on interim results of a double-blind, randomized controlled study.
HSV-2 was detected from more than one anatomic site on 56 percent of days when there was viral shedding-and on genital surfaces on both sides of the participants' bodies on most days when virus was detected at more than one site.
Weiss is board certified in anatomic and clinical pathology, with subspecialty certification in hematology and medical microbiology.
When I first started at HFHS in 2003, we didn't have a true anatomic pathology information system.