receptor

(redirected from antigen receptor)
Also found in: Dictionary, Thesaurus, Medical, Legal.
Related to antigen receptor: monoclonal antibody

receptor

Physiol a sensory nerve ending that changes specific stimuli into nerve impulses

Receptor

 

a sensory nerve structure that perceives and transforms stimuli from an organism’s external or internal environment and transmits information about the agent of the stimulus to the nervous system. Receptors vary in structure and function. They may be free nerve endings, endings covered with a special capsule, or specialized cells in such complex structures as the retina or Corti’s organ, which consist of many receptors.

Receptors may be external—exteroceptors—or internal—interoceptors. Exteroceptors are located on the external surface of the body of an animal or man, where they receive such stimuli from the external world as light, sound, and heat. Interoceptors are found in such tissues and internal organs as the heart, lymphatics, blood vessels, and lungs. They receive stimuli that give information about the condition of internal organs (visceroceptors) and the position of the body or part of it in space (vestibuloceptors). The proprioceptors, a type of interoceptor, are located in muscles, tendons, and ligaments. They transmit information about the static condition and dynamics of the muscles.

Mechanoreceptors, photoreceptors, chemoreceptors, and thermoreceptors respond to different types of stimuli. Dolphins, bats, and moths have receptors sensitive to ultrasound. The receptors of some fishes are sensitive to electric fields. The question of the existence of receptors sensitive to magnetic fields in certain birds and fishes awaits further study.

Monomodal receptors respond to stimuli of only one kind, either mechanical, photic, or chemical. They include receptors differing in level of sensitivity and reaction to stimuli. For example, the photoreceptors of vertebrates are subdivided into the more sensitive rod cells, which function as receptors of twilight vision, and the less sensitive cone cells, which enable man and some animals to see in the daylight and to perceive different colors. The mechanoreceptors of the skin are subdivided into the more sensitive phase receptors, which react only to the dynamic phase of deformation, and static receptors, which also react to constant deformation. Such specialization permits detection of the most significant properties of a stimulus and refined analysis of the stimuli received.

Multimodal receptors react to stimuli of more than one kind, such as chemical and mechanical or mechanical and temperature. The specific information coded in the molecules is transmitted to the central nervous system along the same nerve fibers in the form of impulses, which during their course receive repeated energy reinforcement.

The historic distinction between distance receptors (visual, auditory, and olfactory), which receive signals from a source of stimulation some distance away from the organism, and contact receptors, those that come into direct contact with a source of stimulation, is still retained. A distinction is also made between primary and secondary receptors. In primary receptors, the substrate that reacts to an external influence is embedded in the sensory neuron itself, which is directly (primarily) excited by the stimulus. In secondary receptors, additional specialized (receptive) cells are situated between the acting agent and the sensory neuron. The energy of external stimuli is transformed into nerve impulses in these cells.

All receptors have a number of properties in common. They are specialized to receive certain types of stimuli. During the action of a stimulus, a change occurs in the variation of the bioelectric potential on the cell membrane. This process, called receptor potential, either generates rhythmic impulses in the receptor cell directly or causes them to appear in another neuron, connected to the receptor by a synapse. The frequency of impulses increases with increasing intensity of stimulation. If stimulation is prolonged, the frequency of impulses in the fiber branching from the receptor decreases. This reaction, called physiological adaptation, varies in duration from receptor to receptor.

The high sensitivity of receptors to adequate stimulation is measured by the absolute threshold or minimum intensity of stimulation capable of exciting the receptors. Thus, five to seven quanta of light striking the eye’s receptors cause a sensation of light, whereas a single quantum is sufficient to excite an individual photoreceptor. Receptors may also be excited by inadequate stimulation: an electric current can cause a sensation of light or sound by acting on the eye or ear. Sensations are related to the specific sensitivity of receptors that came into being during the evolution of organic nature. Vivid perception of the world is caused chiefly by information coming from the exteroceptors. Information from the interoceptors does not produce distinct sensations.

The functions of the various receptors are interrelated. The interaction of vestibular receptors and of the cutaneous receptors and proprioceptors with the visual receptors is effected by the central nervous system. This interaction causes perception of the size and shape of objects and their position in space. Receptors may also interact among themselves without the involvement of the central nervous system by virtue of their direct contact with one another. Such interaction among visual, tactile, and other receptors is an essential element in the mechanism of spatial and temporal contrast.

Receptors are controlled by the central nervous system, which adjusts them according to the needs of the organism. These adjustments, whose mechanism has been insufficiently studied, are effected by means of special efferent fibers located close to some receptor structures.

Receptor functions are investigated by recording bioelectric potentials directly from receptors or associated nerve fibers and also by recording the reflexes elicited by stimulating receptors.

REFERENCES

Granit, R. Electrofiziologicheskoe issledovanie retseptsii. Moscow, 1957. (Translated from English.)
Prosser, L., and F. Brown. Sravnitel’naiafiziologiia zhivotnykh. Moscow, 1967. (Translated from English.)
Vinnikov, Ia. A. Tsitologicheskie i molekuliarnye osnovy retseptsii: Evoliutsiia organov chuvstv. Leningrad, 1971.
Fiziologiia cheloveka. Edited by E. B. Babskii. Moscow, 1972. Pages 436–98.
Fiziologiia sensornykh sistem, parts 1–2. (Rukovodstvopo fiziologii.) Leningrad, 1971–72.
Handbook of Sensory Physiology, vol. 1, part 1; vol. 4, parts 1–2, Berlin-Heidelberg-New York, 1971–72.
Melzack, R. The Puzzle of Pain. Harmondsworth, 1973.

A. I. ESAKOV

Pharmacologic receptors (also cell or tissue receptors). Pharmacologic receptors are situated on the membrane of effector cells. They receive regulatory and trigger signals from the nervous and endocrine systems and are exposed to many pharmacologic agents that selectively act on such cells. The receptors transform this action into the cell’s specific biochemical or physiological reactions. The pharmacologic receptors that carry out the activity of the nervous system are the ones that have been studied in greatest detail.

Two types of pharmacologic receptors transmit the influence of the parasympathetic and motor divisions of the nervous system (through the mediator acetylcholine): The N-cholinergic receptors transmit nerve impulses to the skeletal muscles and from neuron to neuron within the nerve ganglia, while the M-cholinergic receptors help regulate cardiac activity and the tone of smooth muscles. The influence of the sympathetic nervous system (through the mediator norepinephrine) and of the hormone secreted by the adrenal medulla (epinephrine) is transmitted by the α- and β-adrenergic receptors. Stimulation of the α-adrenergic receptors constricts blood vessels, raises blood pressure, dilates the pupils, and causes some smooth muscles to contract. Stimulation of the β-adrenergic receptors raises blood sugar levels, activates enzymes, dilates blood vessels, causes smooth muscles to relax, and increases the frequency and intensity of cardiac contractions. Thus, the functional effects are realized through both types of adrenergic receptors, while the metabolic effects are realized mainly through the β-adrenergic receptors.

Some pharmacologic receptors are sensitive to dopamine, serotonin, histamine, polypeptides, and other endogenous biologically active substances, as well as to the pharmacologic antagonists of some of these substances. The therapeutic action of a number of pharmacologic agents results from their specific effect on specific receptors.

REFERENCES

Turpaev, T. M. Mediatornaia funktsiia atsetilkholina i priroda kholinoretseptora. Moscow, 1962.
Manukhin, B. N. Fiziologiia adrenoretseptorov. Moscow, 1968.
Mikhel’son, M. Ia., and E. V. Zeimal’. Atsetilkholin. Leningrad, 1970.

B. N. MANUKHIN

receptor

[ri′sep·tər]
(biochemistry)
A site or structure in a cell which combines with a drug or other biological to produce a specific alteration of cell function.
(physiology)
A sense organ.

receptor

1. A channel-shaped, telescoping member which adapts the frame of a window to the size of the window opening; an adapter.
2. The shallow base pan for a shower.
References in periodicals archive ?
Chimeric Antigen Receptors (CARs) and Adoptive Immune System
Maus et al., "Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies," Cancer immunology research, vol.
Riviere, "The basic principles of chimeric antigen receptor design," Cancer Discovery, vol.
DelveInsight Report, "PD-1 and PD-L1 inhibitors and Chimeric Antigen Receptor (CAR)-T cell Immunotherapy - Competitive Landscape, Pipeline and Market Analysis, 2015" gives the comprehensive insights on the PD-1 and PD-L1 Inhibitors and CART Immunotherapy.
The study, published July 20, 2009, in Blood, shows that African-Americans with HIV who possess both a variation in the gene for the Duffy antigen receptor for chemokine (DARC) and leukopenia have slower HIV-to-AIDS progression rates than HIV-infected European-Americans with leukopenia.
The Sleeping Beauty platform genetically modifies T cells with DNA plasmids to express T-cell receptors (TCRs) to target specific antigens in solid tumors and a chimeric antigen receptor (CAR) to target CD19 in blood cancers with the Company's 3rd generation T-cell manufacturing process, termed 'rapid personalized manufacture'.
dedicated to genome-edited, off-the-shelf chimeric antigen receptor T cell therapy products.
The company's PD-L1 t-haNK cell therapy is a novel, NK cell-based immuno-oncology therapy that includes a PD-L1 based Chimeric Antigen Receptor engineered into the company's proprietary haNK NK cell, which also includes the high affinity variant of the CD16 receptor to mediate antibody dependent cellular cytotoxicity.
The 20-acre site will significantly expand Kites ability to manufacture a variety of chimeric antigen receptor T (CAR T) therapies, including Yescarta (axicabtagene ciloleucel), Kites first commercially available CAR T cancer therapy, and investigational T cell receptor (TCR) cell therapies being evaluated in solid tumors.
Juno is in the development of CAR (chimeric antigen receptor) T and TCR (T cell receptor) therapeutics with a broad, novel portfolio evaluating multiple targets and cancer indications.
New Delhi, India, July 03, 2015 --(PR.com)-- DelveInsight, the leading Business Consultant and Market Research firm is pleased to declare the launch of its report, Chimeric Antigen Receptor (CAR)-T cell Immunotherapy- Competitive Landscape, Technology and Pipeline Analysis, 2015.
Hematologists, oncologists, pediatricians, and other clinicians from North America, Asia, and France cover the history of its treatment, its epidemiology and etiology, diagnosis and classification, molecular pathogenesis, cytogenetics, chemotherapy for adults and children, the use of asparaginase, the monitoring of minimal residual disease to guide therapy, prophylaxis and treatment of central nervous system involvement, pharmacogenomics and chemotherapy, hematopoietic stem cell transplantation, long-term complications of therapy, and new treatment agents, including bispecific T-cell engaging antibodies and autologous antigen receptor expressing T-cells.