(redirected from automative)
Also found in: Dictionary, Thesaurus, Medical, Financial.


automation, automatic operation and control of machinery or processes by devices, such as robots that can make and execute decisions without human intervention. The principal feature of such devices is their use of self-correcting control systems that employ feedback, i.e., they use part of their output to control their input. Once the automated process is set up, human participation in the manufacturing process involves little more than maintenance and repair of the equipment.

In a typical automated manufacturing process, the feeding in of materials, the machine operation, the transfers from one machine to another, the final assembly, the removal, and the packing are all done automatically. In some automated manufacturing, a single robot with interchangeable tool heads performs all of the various manufacturing assignments. At various stages in the operation are inspection devices that reject substandard products and adjust the machinery to correct any malfunction. Since electronic computers are able to store, select, record, and present data systematically, they are widely used to direct automated systems.

Automation is applied to the manufacture of foodstuffs, chemicals, pharmaceuticals, textiles, electronics, and many other goods, and is used in steel mills, automobile factories, printing plants, coal mines, package-handling facilities, and other workplaces. Another application is its use in the launching, aiming, and guidance of military rockets and other weapons. Automation has also been applied to information handling, resulting in automatically prepared bills and reports, computerized stock trading and typesetting, and the solution of many engineering problems. It offers high quality products together with great savings in costs, but the consequences of the loss of jobs due to automation can have significant societal effects, especially in smaller and moderately sized communities.

See also robotics; computer-aided manufacturing.


See P. Senker, Toward the Automatic Factory? The Need for Training (1986); D. I. Cleland and Bapaya Bidando, Factory Automation Handbook (1990).

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.


The use of electronic equipment, especially computer systems, for the automatic control of instruments and processes and for automatically acquiring and processing information. The applications in astronomy include positioning and tracking of telescopes, direct control of instruments associated with telescopes, the storage of information and its reduction by sampling or simple analysis, and the processing of the information. See also computing; imaging; remote operation.
Collins Dictionary of Astronomy © Market House Books Ltd, 2006


any form of industrial production in which the productive process is carried out substantially or entirely by machines, with a consequent reduction in the requirement for routine manual labour. As the undertaking and control of productive processes in this manner has become more commonplace (especially with the development of computer technology), the term has tended to fall out of use, being replaced by other general terms such as INFORMATION TECHNOLOGY or simply NEW TECHNOLOGY.

Both popular and sociological debate about automation have been concerned with its consequences for levels of employment: whether it will lead to an overall decline in the requirement for labour, increases in unemployment, the onset of a new age of LEISURE, and so on. What seems clear, however, is that while it may involve a decrease in the demand for unskilled or routine forms of manual labour, the demand for educated labour – necessary in the design and maintenance of the new machines and in the management of the new processes -is likely to increase. However, how far these new jobs will themselves tend to become routinized (e.g. involve routine keyboard work) remains an unresolved issue (see DESKILLING). The implications of automation and new technology for overall

Collins Dictionary of Sociology, 3rd ed. © HarperCollins Publishers 2000
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.



a branch of science and technology dealing with the theory and design principles of control systems which operate without direct human participation; in a narrow sense, it is an aggregate of methods and technological facilities that obviate human participation when carrying out operations of a specified process. Automation was recognized as an independent technological field at the Second World Power Conference (Berlin, 1930), where a section was created for automatic and remote control problems. The term “automation” became common in the USSR in the early 1930’s.

Automation arose as a science based on the theory of automatic regulation which was established in the works of J. C. Maxwell (1868), I. A. Vyshnegradskii (1872–78), A. Stodola (1899), and others; it was formulated into an independent scientific and technical discipline in 1940. The history of automation as a branch of technology is closely associated with the development of automatons, automatic devices, and automated complexes. In the process of its formation, automation drew on theoretical mechanics and the theory of electrical circuits and systems. It solved problems associated with regulating pressure in steam boilers, the piston stroke in steam engines, and the rotation speed in electrical machines, in addition to problems in operational control of automatic machine tools, automatic telephone exchanges, and relay protection devices. Correspondingly, the technical facilities of automation in this period were developed and used in connection with automatic regulating systems. The intensive development of all branches of science and technology in the mid-20th century also induced a rapid growth in the technology of automatic control whose applications are becoming universal.

The second half of the 20th century was marked by further improvement of the technical facilities of automation and a broad but uneven distribution in various areas of the national economy of automatic control arrangements with a transition to more complex automatic control systems, especially in industry; automation of individual units was replaced by integrated automation of shops and factones. An important feature is the use of automation for objects at great distances from one another, such as large industrial and power complexes and control systems for spacecraft. Communication between the individual installations of such systems is achieved through remote control facilities which are combined with control equipment and controlled objects to form remote-controlled automatic systems. Of great significance here are the technical (including remote control) means for collecting and automatically processing information because many problems in complicated automatic control systems can be solved only with the aid of computer technology. Finally, the theory of automatic regulation is giving way to the generalized theory of automatic control, which unifies all the theoretical aspects of automation and forms a basis for a general theory of control.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.


The use of technology to ease human labor or extend the mental or physical capabilities of humans.
The mechanisms, machines, and systems that save or eliminate labor, or imitate actions typically associated with human beings.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.


The process of having a machine or machines accomplish tasks hitherto performed wholly or partly by humans. As used here, a machine refers to any inanimate electromechanical device such as a robot or computer. As a technology, automation can be applied to almost any human endeavor, from manufacturing to clerical and administrative tasks. An example of automation is the heating and air-conditioning system in the modern household. After initial programming by the occupant, these systems keep the house at a constant desired temperature regardless of the conditions outside.

The fundamental constituents of any automated process are (1) a power source, (2) a feedback control mechanism, and (3) a programmable command (see illustration) structure. Programmability does not necessarily imply an electronic computer. For example, the Jacquard loom, developed at the beginning of the nineteenth century, used metal plates with holes to control the weaving process. Nonetheless, the advent of World War II and the advances made in electronic computation and feedback have certainly contributed to the growth of automation. While feedback is usually associated with more advanced forms of automation, so-called open-loop automated tasks are possible. Here, the automated process proceeds without any direct and continuous assessment of the effect of the automated activity. For example, an automated car wash typically completes its task with no continuous or final assessment of the cleanliness of the automobile. See Control systems, Digital computer

Elements of an automated systemenlarge picture
Elements of an automated system

Because of the growing ubiquity of automation, any categorization of automated tasks and processes is incomplete. Nonetheless, such a categorization can be attempted by recognizing two distinct groups, automated manufacturing and automated information processing and control. Automated manufacturing includes automated machine tools, assembly lines, robotic assembly machines, automated storage-retrieval systems, integrated computer-aided design and computer-aided manufacturing (CAD/CAM), automatic inspection and testing, and automated agricultural equipment (used, for example, in crop harvesting). Automated information processing and control includes automatic order processing, word processing and text editing, automatic data processing, automatic flight control, automatic automobile cruise control, automatic airline reservation systems, automatic mail sorting machines, automated planet exploration (for example, the rover vehicle, Sojourner, on the Mars Pathfinder mission), automated electric utility distribution systems, and automated bank teller machines. See Computer-aided design and manufacturing, Computer-integrated manufacturing, Flexible manufacturing system, Inspection and testing

A major issue in the design of systems involving both human and automated machines concerns allocating functions between the two. This allocation can be static or dynamic. Static allocation is fixed; that is, the separation of responsibilities between human and machine do not change with time. Dynamic allocation implies that the functions allocated to human and machine are subject to change. Historically, static allocation began with reference to lists of activities which summarized the relative advantages of humans and machines with respect to a variety of activities. For example, at present humans appear to surpass machines in the ability to reason inductively, that is, to proceed from the particular to the general. Machines, however, surpass humans in the ability to handle complex operations and to do many different things at once, that is, to engage in parallel processing. Dynamic function allocation can be envisioned as operating through a formulation which continuously determines which agent (human or machine) is free to attend to a particular task or function. In addition, constraints such as the workload implied by the human attending to the task as opposed to the machine can be considered. See Human-factors engineering

It has long been the goal in the area of automation to create systems which could react to unforeseen events with reasoning and problem-solving abilities akin to those of an experienced human, that is, to exhibit artificial intelligence. Indeed, the study of artificial intelligence is devoted to developing computer programs that can mimic the product of intelligent human problem solving, perception, and thought. For example, such a system could be envisioned to perform much like a human copilot in airline operations, communicating with the pilot via voice input and spoken output, assuming cockpit duties when and where assigned, and relieving the pilot of many duties. Indeed, such an automated system has been studied and named a pilot's associate. Machines exhibiting artificial intelligence obviously render the sharp demarcation between functions better performed by humans than by machines somewhat moot. While the early promise of artificial intelligence has not been fully realized in practice, certain applications in more restrictive domains have been highly successful. These include the use of expert systems, which mimic the activity of human experts in limited domains, such as diagnosis of infectious diseases or providing guidance for oil exploration and drilling. Expert systems generally operate by (1) replacing human activity entirely, (2) providing advice or decision support, or (3) training a novice human in a particular field. See Expert systems

McGraw-Hill Concise Encyclopedia of Engineering. © 2002 by The McGraw-Hill Companies, Inc.


1. the use of methods for controlling industrial processes automatically, esp by electronically controlled systems, often reducing manpower
2. the extent to which a process is so controlled
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005


Automatic, as opposed to human, operation or control of a process, equipment or a system; or the techniques and equipment used to achieve this. Most often applied to computer (or at least electronic) control of a manufacturing process.

See also design automation, office automation, manularity, Manufacturing Automation Protocol, PEARL, QBE.
This article is provided by FOLDOC - Free Online Dictionary of Computing (


Replacing manual operations with electronics and computer-controlled devices. For example, "office automation" replaced manual typewriters, filing cabinets and paper appointment books with computer applications. Tape and disk libraries have been called "automation systems" because robotic arms pick cartridges out of a stacker and move them to the drives.

Robots continue to replace human workers in factories; online learning displaces teachers, and computer-based systems of all kinds are slowly but surely eliminating jobs. At some future time when self-driving cars take off for public transportation, millions of jobs are expected to disappear around the globe. In fact, it has been estimated that as many as half of today's jobs in the U.S. will be replaced by automation by 2050. In the 21st century, educating and retraining people for high-tech employment is essential. See automator, robot, computer ethics, naming fiascos, automagic and automata theory.

A Vision of Automation (circa 1895)
More than a hundred years ago, the concept of the future lacked a major ingredient... the computer! Artist unknown. (Image courtesy of Rosemont Engineering.)
Copyright © 1981-2019 by The Computer Language Company Inc. All Rights reserved. THIS DEFINITION IS FOR PERSONAL USE ONLY. All other reproduction is strictly prohibited without permission from the publisher.
References in periodicals archive ?
Nissan was praised for its handling of the situation by Unite, but the union's automative industry officer, Roger Maddison, said: "The company is best placed of all car companies to be able to weather the economic storm.
The region's experience with research and development as the brain center of the global automative industry makes us a strong contender to be a major hub of the alternative energy industry.
"The most important trend affecting aluminum casting production is its continuous growth in automative applications.
He also has a heavy involvement in the automative industry, which began with Silverthorne Motors in Colorado.
NORDIC BUSINESS REPORT-8 December 2006-Valmet Automative to decrease production volume(C)1994-2006 M2 COMMUNICATIONS LTD
The aid deal was announced after Chinese manufacturer Shanghai Automative (SAIC) walked away from talks, leaving 5000 workers on the dole.
If you want to be wowed by the creativity and talent of these automative grand masters, you can inspect the scale models they've designed and built this year at the Royal College, Kensington Gore, West London, on Friday and Saturday 10am-6pm.
Applications: Automative, large appliance, electrical, leisure. (FlexLink) Systems' new Web site allows visitors to jump to specific areas of the site based on the industry served, including electronics, pharmaceuticals, automative and paper converting, Customers can access the company's product catalogue in English, German, French, Italian, Spanish, Swedish, Japanese and Chinese.
German automaker BMW AG said Friday it has received approval from the Chinese government to manufacture passenger cars in China in partnership with Brilliance China Automative Holdings Ltd.
(LTI), a wholly-owned subsidiary of Manganese Bronze Holdings PLC, has signed a deal with Brilliance China Automative Holdings Ltd.