bisection algorithm

bisection algorithm

[′bī‚sek·shən ′al·gə‚rith·əm]
(mathematics)
A procedure for determining the root of a function to any desired accuracy by repeatedly dividing a test interval in half and then determining in which half the value of the function changes sign.
References in periodicals archive ?
Again, the solution to the problem (17a)-(17c) can be obtained by using a standard bisection algorithm.
Use bisection algorithm to determine corrected maximal [[?
10) requires one multiplication less for the semiseparable case, and this is why the bisection algorithm works 10% faster than for quasiseparable matrices.
The bisection algorithm of Gu [8] keeps only an upper bound on the distance to uncontrollability.
This paper systematically compares such generalized bisection algorithms to themselves, to continuation methods, and to hybrid steepest descent/quasi-Newton methods.