chip manufacturing


Also found in: Dictionary, Thesaurus, Medical, Legal.

chip manufacturing

The making of an integrated circuit (IC), widely known as a "chip," is perhaps the most amazing manufacturing process the world has ever conceived. A sliver of silicon no larger than a postage stamp can contain hundreds of millions of transistors, which, acting like on/off switches, are the fundamental active components on the chip. It all starts with the design of the circuits, which carry electrical pulses from one point to another. To learn about the different types of chips, see chip.


Transistors to Gates to Circuits
Pulses flow through transistors that open or close when electrically activated. The current flowing through one switch effects the opening or closing of another and so on. Transistors are wired together in "gates," which are patterns of AND, OR and NOT logic (see Boolean logic). Gates make up circuits, and circuits make up CPUs and other electronic systems. See Boolean Logic.







Inspecting the Plumbing
People are always more flexible than computers and can find flaws that might go undetected by software analysis. (Image courtesy of Elxsi Corporation.)



FROM LOGIC TO PLUMBING
All circuits were originally designed in some manner by humans. Today, most logic functions reside in electronic libraries, and designers pick and choose modules from a menu. There might be some "glue logic" necessary to interconnect them, which must be designed by a human, logic gate by logic gate. If a complete function is not available, it must be created from scratch, gate by gate.

Computers make computers. The computer converts the logical circuit design into transistors, diodes and resistors. From there the whole thing is turned into a plumber's nightmare that connects millions of components together. After inspection by technicians, the electronic images are transferred to machinery that creates glass, lithographic plates, called "photomasks."

Inspecting the Plumbing
People are always more flexible than computers and can find flaws that might go undetected by software analysis. (Image courtesy of Elxsi Corporation.)




The photomask is the actual size of the chip, replicated many times to fit on a round silicon wafer up to 12" in diameter. The transistors are built by creating subterranean layers in the silicon, and a different photomask is created to isolate each layer to be worked on.

Inspecting the Plumbing
People are always more flexible than computers and can find flaws that might go undetected by software analysis. (Image courtesy of Elxsi Corporation.)







CHIPS ARE JUST ROCKS
The base material of a chip is usually silicon, although materials such as sapphire and gallium arsenide are also used. Silicon is found in quartz rocks and is purified in a molten state. It is then chemically combined (doped) with other materials to alter its electrical properties. The result is a silicon crystal ingot up to 12 inches in diameter that is either positively (p-type) or negatively charged (n-type). Slices of the ingot approximately 1/30th of an inch thick are cut from this "crystal salami." The slices are called "wafers."

Drawing the Ingot
The silicon ingot is being drawn from a scalding furnace containing molten silicon. High-speed saws will slice it into wafers about as thick as a dime, which will then be ground thinner and polished like a mirror. (Image courtesy of Texas Instruments, Inc.)




Drawing the Ingot
The silicon ingot is being drawn from a scalding furnace containing molten silicon. High-speed saws will slice it into wafers about as thick as a dime, which will then be ground thinner and polished like a mirror. (Image courtesy of Texas Instruments, Inc.)







BUILDING THE LAYERS
Circuit building starts out by adhering a layer of silicon dioxide insulation on the wafer's surface. The insulation is coated with film and exposed to light through the first photomask, hardening the film and insulation below it. The unhardened areas are etched away exposing the silicon base below. By shooting a gas under heat and pressure into the exposed silicon (diffusion), a sublayer with different electrical properties is created beneath the surface.

Inspecting Wafers
The lady is wearing a "bunny suit," but is not wearing a mask, because the wafers have already been manufactured. (Image courtesy of Hewlett-Packard Company.)


Through multiple stages of masking, etching, and diffusion, the sublayers on the chip are created. The final stage lays the top metal layer (usually aluminum), which interconnects the transistors to each other and to the outside world.


Inspecting Wafers
The lady is wearing a "bunny suit," but is not wearing a mask, because the wafers have already been manufactured. (Image courtesy of Hewlett-Packard Company.)






Each chip is tested on the wafer, and bad chips are marked for elimination. The chips are sliced out of the wafer, and the good ones are placed into packages (DIPs, PQFPs, etc.). The chip is connected to the package with tiny wires, then sealed and tested as a complete unit.

Packaging the Chip
This machine bonds the chips to the metal structure that will be connected to the pins of the chip housing and carry the signals to and from the circuit board. (Image courtesy of Texas Instruments, Inc.)



Chip making is extremely precise. Operations are performed in a "clean room," since air particles can mix with the microscopic mixtures and easily render a chip worthless. Depending on the design complexity, more chips can fail than succeed.



Packaging the Chip
This machine bonds the chips to the metal structure that will be connected to the pins of the chip housing and carry the signals to and from the circuit board. (Image courtesy of Texas Instruments, Inc.)







The Future


In the early 1980s, the 8088 CPU chip in the first PCs had 25 thousand transistors. Twenty years later, Intel's Itanium 2 contained 220 million.

There is a never-ending thirst to build more and more transistors onto a single chip. In order to etch the photomasks finer and create elements as tiny as 32 nanometers and smaller, ultraviolet light has replaced visible light. See feature size.

From 2D to 3D
Just as the chip eliminated cutting apart the transistors only to be reconnected in circuit patterns, increasingly, more circuits are built into the same chip, creating complete systems (see SoC). As we make the chip wider, we are also trying to make it deeper. Not only are we making the elements smaller and the chip larger, we are building chips in layers (3D chips).

Science Fiction
Today's chips are yesterday's science fiction; however, it never ends. In the early 2000s, IBM's Almaden Labs made an experimental circuit of carbon monoxide molecules. Taking up space 260,000 times smaller than the equivalent silicon, the circuit performed a calculation by making the molecules collide with each other. Stay tuned!


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)


Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)




Dressing for Work
The fabrication of the tiny transistor is an extremely precise one. The slightest contaminants in the air can render the transistor and chip useless. Putting on the "bunny suit" is an elaborate procedure. (Image courtesy of Intel Corporation.)







No Germs in these Rooms
You won't catch the flu working in a chip fabrication plant, at least not in the clean room. Bunny suits and clean rooms are required to produce high yields of defect-free chips. (Photos from top to bottom courtesy of Texas Instruments, Inc., and Motorola, Inc.)


No Germs in these Rooms
You won't catch the flu working in a chip fabrication plant, at least not in the clean room. Bunny suits and clean rooms are required to produce high yields of defect-free chips. (Photos from top to bottom courtesy of Texas Instruments, Inc., and Motorola, Inc.)
References in periodicals archive ?
Ajami also said ATIC is open to acquisitions beyond the contract chip manufacturing business to strengthen its position in the semiconductor business.
As leading-edge chip manufacturing moves from the 90nm node down to 65nm and 45nm designs, it is becoming evident that design-related or systematic defects are becoming increasingly the limiter of chip yield and time-to-market.
Using Infineon's broad experience in microcontrollers, intellectual property and advanced chip manufacturing technologies, core-based designs can be optimized for specific system requirements.
Ultimately, they hope to apply what they learn from the insects to computer chip manufacturing and the assembly of microelectromechanical systems (SN: 7/26/97, p.
Study on RFID chip manufacturing enterprises in Mainland China
Recent analysts have concluded that a peak has been reached in the semiconductor chip manufacturing cycle but manufacturers disagree.
semiconductor manufacturersregain leadership in chip manufacturing and maintain leadership in chip design, the Defense Science Board recommends that DOD pump hundreds of millions of dollars more into semiconductor research, development and especially manufacturing.
Principally, the semiconductor industry was poised to see a greater relaxation on chip manufacturing in China, including the approval of additional fab projects, the transfer of 0.