disjoint sets


Also found in: Wikipedia.

disjoint sets

[dis′jȯint ′sets]
(mathematics)
Sets with no elements in common.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
Suppose [V.sub.1],..., [V.sub.m-1] are pairwise disjoint sets in L = V U.
Among their problems are the Erdos-Ko-Rado theorem via shifting, the Kleitman theorem for no s pairwise disjoint sets, uniform measure versus product measure, F'rude's structure theorem, some algebraic constructions for L systems, and a cross intersection problem with measures.
A bitopological space (X, [[tau].sub.1], [[tau].sub.2]) is called [[tau].sub.1][[tau].sub.2]-[delta] semiconnected space, if X cannot be expressed as the union of two disjoint sets A([not equal to] [phi]) and B([not equal to] [phi]) such that (A [intersection] [[tau].sub.1]-[delta]scl(B)) [union] (B [intersection] [[tau].sub.2]-[delta]scl(A)) = [phi].
This problem differs from the target coverage which is based on disjoint covering sets, since coverage ensures that the [E.sub.relay] energy of each sensor from each of the disjoint sets is kept at minimum.
(2) for every R > 0 and R' [greater than or equal to] 0 exists [p.sub.2] = [p.sub.2](R, R') [greater than or equal to] 1 that for all [z.sup.0] [member of] [C.sup.n] such that [T.sup.n]([z.sup.0], R/L([z.sup.0])) \ [G.sup.R'](F) = [[universal].sub.i] [C.sub.i] [not equal to] 0, where the sets [C.sub.i] are connected disjoint sets, and either (a) [mathematical expression not reproducible], or (b) [mathematical expression not reproducible], or (c) [mathematical expression not reproducible], and [z.sup.*], [z.sup.**] belong to the same set [mathematical expression not reproducible]
The sensors can be divided into a collection of disjoint sets such that every set can satisfy the coverage requirement.
A graph is an ordered pair of disjoint sets such that is a subset of the set of unordered pairs of ; the set is the set of vertices and is the set of edges.
Near sets are disjoint sets that resemble each other, especially resemblance defined within perceptual representative spaces (a.k.a., tolerance spaces).
Definition 4 A species (with restrictions) P is a Hopf monoid if there is a collection of maps [[??].sub.S,T]: [P.sub.S] x [P.sub.T] [right arrow] [P.sub.S[??]T] for any disjoint sets S and T, which is natural in S and T, and is associative.