Field-Effect Transistor

(redirected from field-effect transistors)
Also found in: Dictionary, Thesaurus.

transistor

transistor, three-terminal, solid-state electronic device used for amplification and switching. It is the solid-state analog to the triode electron tube; the transistor has replaced the electron tube for virtually all common applications.

Types of Transistors

The transistor is an arrangement of semiconductor materials that share common physical boundaries. Materials most commonly used are silicon, gallium-arsenide, and germanium, into which impurities have been introduced by a process called “doping.” In n-type semiconductors the impurities or dopants result in an excess of electrons, or negative charges; in p-type semiconductors the dopants lead to a deficiency of electrons and therefore an excess of positive charge carriers or “holes.”

The Junction Transistor

The n-p-n junction transistor consists of two n-type semiconductors (called the emitter and collector) separated by a thin layer of p-type semiconductor (called the base). The transistor action is such that if the electric potentials on the segments are properly determined, a small current between the base and emitter connections results in a large current between the emitter and collector connections, thus producing current amplification. Some circuits are designed to use the transistor as a switching device; current in the base-emitter junction creates a low-resistance path between the collector and emitter. The p-n-p junction transistor, consisting of a thin layer of n-type semiconductor lying between two p-type semiconductors, works in the same manner, except that all polarities are reversed.

The Field-Effect Transistor

A very important type of transistor developed after the junction transistor is the field-effect transistor (FET). It draws virtually no power from an input signal, overcoming a major disadvantage of the junction transistor. An n-channel FET consists of a bar (channel) of n-type semiconductor material that passes between and makes contact with two small regions of p-type material near its center. The terminals attached to the ends of the channel are called the source and the drain; those attached to the two p-type regions are called gates. A voltage applied to the gates is directed so that no current exists across the junctions between the p- and n-type materials; for this reason it is called a reverse voltage. Variations of the magnitude of the reverse voltage cause variations in the resistance of the channel, enabling the reverse voltage to control the current in the channel. A p-channel device works the same way but with all polarities reversed.

The metal-oxide semiconductor field-effect transistor (MOSFET) is a variant in which a single gate is separated from the channel by a layer of metal oxide, which acts as an insulator, or dielectric. The electric field of the gate extends through the dielectric and controls the resistance of the channel. In this device the input signal, which is applied to the gate, can increase the current through the channel as well as decrease it.

Invention and Uses of the Transistor

The invention of the transistor by American physicists John Bardeen, Walter H. Brattain, and William Shockley, later jointly awarded a Nobel Prize, was announced by the Bell Telephone Laboratories in 1948; it was also independently developed nearly simultaneously by Herbert Mataré and Heinrich Welker, German physicists working at Westinghouse Laboratory in Paris. Since then many types have been designed. Transistors are very durable, are very small, have a high resistance to physical shock, and are very inexpensive. At one time, only discrete devices existed; they were usually sealed in ceramic, with a wire extending from each segment to the outside, where it could be connected to an electric circuit. The vast majority of transistors now are built as parts of integrated circuits. Transistors are used in virtually all electronic devices, including radio and television receivers, computers, and space vehicles and guided missiles.

See microelectronics.

The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Field-Effect Transistor

 

(FET), a semiconductor device in which the current is varied by the action of an electric field that is perpendicular to the current and is generated by the input signal. The operating current in FET is transported by charge carriers of only one sign (electrons or holes); therefore such devices are called unipolar, in contrast to bipolar transistors.

Field-effect transistors are arbitrarily divided into two groups, depending on their physical structure and mechanism of operation. The first group consists of transistors in which a p-n junction or a metal-semiconductor junction, called a Schottky barrier, controls the current; the second consists of transistors in which an insulated electrode, or gate, controls the current, and those in this group are called MIS (metal-insulator-semiconductor) transistors. The dielectric used in the latter may be silicon dioxide (MOS transistor) or a laminar structure such as SiO2-Al2O3 (MAOS transistor) or SiO2-Si3N4 (MNOS transistor). The insulated gate FET’s also include those with a “floating” gate and those in which a charge is stored in the insulated gate; they are used as electronic memory elements. The semiconductors used in FET’s are mainly Si and GaAs, and the metals for forming junctions are Al, Mo, and Au. FET’s were developed in the 1950’s to 1970’s, based on the work of the American scientists W. Shockley, C. A. Mead, D. Kang, and M. Atalla.

In the first group of FET’s (Figure 1, a and b) the control element (gate) is a semiconductor or metal electrode that forms a p-n or metal-semiconductor junction with the semiconductor in the channel region. A voltage is supplied to the gate that reduces the current flowing from the source to the drain. When this voltage is increased, the space-charge region of the junction, which is depleted by the charge carriers, spreads into the channel region and reduces the conducting cross section of the channel. At a certain value of the gate voltage, called the pinch-off voltage Upo, the current in the device is cut off.

In insulated-gate FET’s (Figure 1,c) the metal control electrode is separated from the channel region by a dielectric layer 0.05-0.20 microns thick. The channel may be formed by a technological process (embedded channel) or by the voltage supplied to the gate in the operating mode (induced channel). Accordingly, a device will have a transfer characteristic of type I or type II (Figure 1,c).

FET’s are used extensively in electronic apparatus for power and voltage amplification of electrical signals. They are the solid-state analogues of electron tubes and are described by an analogous system of parameters—transconductance (0.1 to 400 milliamperes per volt), pinch-off voltage (0.5 to 20 volts), and DC input resistance (1011 to 1016 ohms).

FET’s using a p-n control junction have the lowest noise level (mainly of thermal noise) among semiconductor devices over a wide frequency range, from infralow to superhigh frequencies (SHF): the noise factor of the best transistors is less than 0.1 decibel (dB) at a frequency of 10 hertz (Hz) and about 2 dB at a frequency of 400 megahertz (MHz). This type of transistor can dissipate up to several tens of watts. The main drawback of such transistors is the relatively high transfer capacitance, which must be neutralized for high amplification. FET’s using a metal-semiconductor junction achieve the highest operating frequencies. The maximum frequency with power amplification of the gallium arsenide FET’s exceeds 40 gigahertz (GHz). Insulated-gate FET’s have a high DC input resistance (up to 1016 ohms, which is two to three orders of magnitude higher than other FET’s and is comparable to the input resistance of the best electrometer tubes). In the SHF region the amplification and noise level of these FET’s are the same as for bipolar transistors (the limiting frequency for power amplification is about 10 GHz, the noise factor at 2 GHz is about 3.5 dB, and the dynamic range is more than 100 dB), but their discrimination and noise immunity are better because of their strictly quadratic transfer characteristic. The relative simplicity of fabrication (using planar technology) and the circuit features of their structure make possible the use of FET’s in large-scale integrated circuits (LSI circuits) of computer devices—for example, LSI circuits have been developed that contain more then 10,000 MIS transistors in one crystal.

Figure 1. Diagrams and transfer characteristics of FET’s with a p-n control junction (a), with a metal-semiconductor control junction (b), and with an insulated gate (c): (1) gate, (2) channel region, (3) space-charge region, (4) source, (5) drain, (6) dielectric, (7) semiconductor with p-type conductivity, (8) semiconductor with n-type conductivity, (ld) drain current, (Ed) DC voltage of the current source in the drain circuit, (Ug) gate voltage, (Upo) pinch-off voltage, (es) signal voltage being amplified, (Eg) initial bias voltage at the operating point, (RL) load resistance. The black areas are the metal coatings, and the arrows in the channel region indicate the direction of electron movement.

REFERENCES

Malin, B. V., and M. S. Sonin. Parametry i svoistva polevykh tranzistorov. Moscow, 1967.
Polevye tranzistory. Moscow, 1971. (Translated from English.)
Sze, S. M. Fizika poluprovodnikovykh priborov. Moscow, 1973. (Translated from English.)

V. K. NEVEZHIN and O. V. SOPOV

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.

field-effect transistor

[′fēld i‚fekt tran′zis·tər]
(electronics)
A transistor in which the resistance of the current path from source to drain is modulated by applying a transverse electric field between grid or gate electrodes; the electric field varies the thickness of the depletion layer between the gates, thereby reducing the conductance. Abbreviated FET.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
In 1980, this electronic Company created a microcontroller i8051, on the silicon chip of which placed 128 thousand field-effect transistors were placed.
Matsumoto, "Selective ion sensors based on ionophore-modified graphene field-effect transistors," Sensors and Actuators B: Chemical, vol.
Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Applied Physics Letters, vol.
Avouris, "The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors," Nano Letters, vol.
[29.] V K Khanna, "Advances in chemical sensors, biosensors and microsystems based on ion-sensitive field-effect transistor", Indian Journal of Pure and Applied Physics, vol.
The researchers reported that much progress has been made in the development of light-emitting organic field-effect transistors (LE-OFETs) since they first appeared in 2003.
Since 2001, microelectronics engineer Peng-Fei Wang at Fudan University in Shanghai has worked to integrate another type of transistor called a tunneling field-effect transistor, or TFET, into mainstream electronics.
The circuit is a semiconductor element that has three terminals: a source, drain, and gate electrode, which is a configuration similar to that of conventional silicon metal-oxide-semiconductor field-effect transistors (MOSFETs).
Simin et al., "[Si.sub.3][N.sub.4]/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors," Applied Physics Letters, vol.
where [A.sub.1] = [L.sub.ekv][C.sub.GD] - [([C.sub.B](B)[R.sub.B](B)).sup.2] - [C.sub.GD]([R.sup.2.sub.B](B), [C.sub.B],[R.sub.B] - equivalent capacity and resistance to base area of magneticsensitive transistor, [C.sub.GD]--capacity a gate-drain of a field-effect transistor.
Semiconductor technology provider Microsemi Corporation (Nasdaq:MSCC) announced on Thursday the development of enhancement mode Gallium Nitride field-effect transistors (FETs) for satellites and other military power conversion, point-of-load and high speed switching applications.

Full browser ?