(redirected from indium 111)
Also found in: Dictionary, Thesaurus, Medical.
Related to indium 111: Xenon 133


indium (ĭnˈdēəm), a metallic chemical element; symbol In; at. no. 49; at. wt. 114.818; m.p. 156.6℃; b.p. about 2,080℃; sp. gr. 7.31 at 20℃; valence +1, +2, or +3. Indium is a soft, malleable, ductile, lustrous, silver-white metallic element; it crystallizes in a face-centered tetragonal structure. Its properties are similar to those of gallium, the element directly above it in Group 13 of the periodic table. Like gallium, it remains in the liquid state over a wide range of temperatures. It wets glass and can be used to form a mirror surface that is more corrosion-resistant than, and reflects as well as, one of silver. It is also used in low-melting fusible alloys and as a protective plating for bearings and other metal surfaces. Although indium resists oxidation at room temperature, when heated above its melting point it ignites and burns with a violet flame; the oxide that is formed is used in glassmaking to give a yellow color. Indium reacts readily with the halogens and (when warm) with other nonmetals, e.g., phosphorus, selenium, and sulfur. It has trivalent compounds that are similar to those of gallium and aluminum. Indium salts color the Bunsen flame a deep blue-violet. Indium phosphide, arsenide, and antimonide are semiconductor materials used in photocells, thermistors, and rectifiers. Indium is found in very low concentrations in many ores and minerals; it was first found in zinc blende and is produced commercially as a byproduct of the smelting of zinc. Indium was discovered in 1863 by Ferdinand Reich and H. T. Richter, using spectroscopic analysis; it was named for a brilliant indigo line in its spectrum.
The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.



In, a chemical element in Group III of the Mendeleev periodic system. Atomic number, 49: atomic mass, 114.82. A lustrous soft white metal, indium comprises a mixture of two isotopes: “3In (4.33 percent) and115In (95.67 percent). The latter isotope exhibits very low β-radioactivity (half-life T 1/2 = 6 X 1014 years).

In 1863, during a spectroscopic analysis of zinc blende, the German scientists F. Reich and T. Richter discovered new spectral lines belonging to an unknown element. The new element was named indium, owing to the bright blue (indigo) color of the lines.

Distribution in nature. Indium is a typical trace element; its average content in the lithosphere comprises 1.4 X 105− percent by weight. Slight accumulation of indium in granite and other acidic rocks occurs during magmatic processes. The main processes of indium concentration in the earth’s crust are connected with hot aqueous solutions, which form hydrothermal deposits in which indium is associated with Zn, Sn, Cd, and Pb. Sphalerites, chalcopyrites, and cassiterites are enriched by indium by an average factor of 100 (approximate content, 1.4 X 103− percent). There are three known indium minerals: native indium, roxite (CuInS2), and indite (In2S,4), all extremely rare. Indium accumulation in sphalerites (up to 0.1 percent, sometimes 1 percent) is of practical importance.

Deposits in the ore belt of the Pacific Ocean are characterized by indium concentration.

Physical and chemical properties. Indium has a tetragonal face-centered crystal lattice with the parameters a = 4.583 Å and c = 4.936 Å. Its atomic radius is 1.66 Å; ionic radii, In3+= 0.92 Å and In+ = 1.30 Å; and density, 7.362 g/cm3. Indium is easily fusible, with a melting point of 156.2°C. Its boiling point is 2075°C. The temperature coefficient of linear expansion is 33 X 10−6 (20°C); specific heat at 0°-150°C is 234.461 joules/ (kg-°K), or 0.056 cal/ (g-°C); specific electrical resistivity at 0°C is 8.2 X 10−8 ohm-m, or 8.2 X 10−6 ohm-cm; modulus of elasticity is 11 henrys/m2, or 1100 kgf/mm2; and Brinell hardness is 9 meganewtons/m2, or 0.9 kgf/mm2.

According to the electron configuration of the atom, 4d105s25p1 indium has a valence of 1, 2, and 3 (primarily) in compounds. In the air, indium remains stable in a solid compact state but oxidizes at high temperatures; above 800°C it burns with a violet-blue flame, yielding the oxide In203—yellow crystals that are highly soluble in acids. Indium readily combines with halogens upon heating, thus forming the soluble halides InCl3, In Br3, and Inl3. The chloride InCl2 is obtained by heating indium in a flow of HCI, while InCl is formed by passing InCl2 vapor over heated indium. The sulfides In2S3 and InS are formed by combining indium with sulfur, which yield the compounds InS-In2S3 and 3InS-In2S3. In water, indium undergoes gradual corrosion at the surface in the presence of oxidizing agents as follows: 4In + 302 + 6H20 = 4In(OH)3. Indium is soluble in acids; its normal electrode potential is equal to— 0.34 V, and it is practically insoluble in alkalis. Indium salts hydro-lyze readily, yielding either basic salts or the hydroxide In(OH)3. The latter is highly soluble in acids and poorly soluble in alkaline solutions (with the formation of salts—indates): In(OH) 3+ 3KOH = K3[In(OH), 6]. Indium compounds with lower degrees of oxidation are fairly unstable; the halides InHal and black oxide ln2O are very strong reducing agents.

Preparation and use. Indium is prepared from the byproducts and intermediate products of industrial zinc, lead, and tin. These raw materials contain from thousandths to tenths of a percent of indium. The process of indium extraction consists of three basic stages: obtaining the enriched product, that is, indium concentrate; processing the concentrate into ferrous metal; and refining. In most cases, the starting raw material is treated with sulfuric acid, converting indium into a solution from which the concentrate is extracted through hydrolytic precipitation. Unrefined indium is extracted primarily by cementation with zinc or aluminum. Refining is carried out using chemical, electrochemical, distillation, and crystallo-physical methods.

Indium and its compounds (for example, nitride InN, phosphide InP, antimonide InSb) are widely used in the production of semiconductors. Indium is used for various anticorrosive coatings (including bearing coatings); these coatings have high reflecting power, which is utilized in the manufacture of mirrors and reflectors. Of commercial importance are certain indium alloys, including fusible alloys, solders for cementing together glass and metal, and others.


Khimiia i tekhnologiia redkikh i rasseiannykh elementov, vols. 1-2. Edited by K. A. Bofshakov. Moscow, 1965-69. (Vol. 1, pp. 88-99; vol. 2, pp. 178-207.)
Zelikman, A. N., O. E. Krein, and G. V. Samsonov. Metallurgiia redkikh metallov. Moscow, 1964. Pages 424—45.
Osnovy metallurgii, vol. 4. Edited by N. S. Greiver, N. P. Sazhin, and I. A. Strigin. Moscow, 1967. Pages 552-61.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.


A metallic element, symbol In, atomic number 49, atomic weight 114.82; soluble in acids; melts at 156°C, boils at 1450°C.
A ductile, silver-white, shiny metal that resists tarnishing and is used in precious-metal alloys for jewelry and dentistry, in glass-sealing alloys, lubricants, and bearing metals, and as an atomic-pile neutron indicator.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.


a rare soft silvery metallic element associated with zinc ores: used in alloys, electronics, and electroplating. Symbol: In; atomic no.: 49; atomic wt.: 114.82; valency: 1, 2, or 3; relative density: 7.31; melting pt.: 156.63?C; boiling pt.: 2073?C
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005


A natural element that, combined with tin, is widely used as a transparent wire. Indium-tin-oxide (ITO) electrodes are attached to the glass plates that sandwich the liquid crystals in LCD displays. They are also used in OLED displays and solar cells. Indium is not mined directly, rather it is extracted from the refuse when zinc and other materials are refined. See LCD and OLED.
Copyright © 1981-2019 by The Computer Language Company Inc. All Rights reserved. THIS DEFINITION IS FOR PERSONAL USE ONLY. All other reproduction is strictly prohibited without permission from the publisher.