integration by parts


Also found in: Acronyms, Wikipedia.

integration by parts

[‚int·ə′grā·shən bī ′parts]
(mathematics)
A technique used to find the integral of the product of two functions by means of an identity involving another simpler integral; for functions of one variable the identity is for functions of several variables the technique is tantamount to using Stokes' theorem or the divergence theorem.
References in periodicals archive ?
The integrand tends to contain three (or more) factors and requires integration by parts.
One would naturally attempt to solve this by integration by parts, differentiating the "arctan" form and integrating sin(x):
In this integral, it is clear that it will eventually require integration by parts, even if we made a substitution first.
A CAS user may rewrite the original integral with the above identity and allow the CAS to carry out the integration by parts to find the solution.
from a more complex integral, integration by parts often involves
Instead, students are taught to use integration by parts,
faster than by using the method of integration by parts.
application of integration by parts must be applied, this time to the
would require four applications of the integration by parts method,
Integral problems where the horizontal product is an integration by parts problem:
Integration by parts problems that are more difficult:

Full browser ?