neuron

(redirected from neuronal)
Also found in: Dictionary, Thesaurus, Medical, Wikipedia.
Related to neuronal: neural network, neuronal plasticity

neuron,

specialized cell in animals that, as a unit of the nervous systemnervous system,
network of specialized tissue that controls actions and reactions of the body and its adjustment to the environment. Virtually all members of the animal kingdom have at least a rudimentary nervous system.
..... Click the link for more information.
, carries information by receiving and transmitting electrical impulses.

Neuron

 

(or nerve cell), the basic structural and functional unit of the nervous system.

A neuron receives signals that enter from receptors and other neurons and processes and transmits the signals in the form of nerve impulses to the effector nerve endings, which control the activities of the corresponding organs of response (muscles, gland cells, or other neurons). Neurons differentiate from neuroblasts, which arise in the neurula stage of embryonic development.

In the process of differentiation a neuron develops specialized structures to ensure the performance of the various neuronal functions. Branched outgrowths, or dendrites, are specialized to receive information; these structures have a receptive membrane and are sensitive to specific physiological stimuli. The excitatory and inhibitory processes that are localized in the receptive membrane accumulate and act on the stimulus region, the most excitable area of the surface membrane of the neuron; this serves as the origin for the spreading bioelectric potentials. The longest outgrowth, the axon (or axis cylinder), is covered by an electrically excitable conducting membrane that serves to transmit the potentials. Having reached the terminal sections of the axon, the nerve impulse excites the secretory membrane; as a result of this, a physiologically active substance, either a mediator substance (chemical transmitter) or a neurohormone, is secreted from the nerve endings.

In addition to structures associated with the performance of specific functions, a neuron has a nucleus (as do all living cells) that, together with the perinuclear cytoplasm, forms the cell body, or perikaryon. It is here that synthesis of macromolecules takes place. Some of these are transported along the axoplasm (the cytoplasm in the axon) to the nerve endings.

The structure, dimensions, and shape of neurons vary widely. Neurons of the cerebral cortex, cerebellum, and some other areas of the central nervous system have complex structures. Multipolar neurons are characteristic of the brain of vertebrates. In such neurons, several dendrites and one axon emerge from the cell-body; the initial section of the axon serves as the excitatory region. Numerous nerve endings from the outgrowths of other neurons converge on the cell body and dendrites of a multipolar neuron. The ganglia of invertebrates usually consist of unipolar neurons; the cell body only fulfills a trophic function and is connected with the axon at the axon hillock. It would appear that such a neuron does not necessarily have true dendrites, and reception of synaptic signals is effected by specialized areas on the surface of the axon. Neurons with two outgrowths are called bipolar; they occur most often as peripheral sensory neurons having one axon and one dendrite, which impinges on the cell surface.

Neurons are classified according to their position in a reflex arc: afferent, or sensory, neurons receive information from the external environment or from receptor cells; interneurons, or internuncial neurons, connect one neuron with another; efferent neurons transmit impulses to the organs of response (for example, motoneurons innervate muscles).

Neurons are also classified according to their chemical specificity, that is, according to the nature of the physiologically active substance that is secreted by the nerve endings of a given neuron. For example, a cholinergic neuron secretes acetylcholine and an adrenergic neuron secretes adrenaline. The number of neurons present in a nervous system determines the variety and complexity of functions that an organism can perform; for example, there are 102 neurons in the Rotatoria and more than 1010 in man.

REFERENCES

Eccles, G. Fiziologiia nervnykh kletok. Moscow, 1959. (Translated from English.)
Hyden, H. “Neiron.” (Translated from English.) In the collection Funktsional’naia morfologiia kletki. Moscow, 1963.
Mekhanizmy deiatel’nosti tsentral’nogo neirona. Moscow-Leningrad, 1966.
Nervnaia kletka: sb. st. Edited by N. V. Golikov. Leningrad, 1966.

D. A. SAKHAROV

neuron

[′nu̇‚rän]
(neuroscience)
A nerve cell, including the cell body, axon, and dendrites.

neuron

References in periodicals archive ?
Polaryx is developing patient-friendly oral small molecule therapeutics for Late Infantile Neuronal Ceroid Lipofuscinosis (LINCL) and other forms of NCL, commonly known as Batten disease.
In the frontal cortex, the researchers identified 16 neuronal subtypes in mice and 21 subtypes in humans.
Results: The results of this study showed that PTZ-induced neuronal cell death by activation of pro apoptotic proteins caspase-3 and 9 whereas the exposure of metformin showed its protective effect against neuronal loss in HCN-2 cell line.
NNR agonists are a class of drugs targeting neuronal nicotinic receptors, also known as neuronal acetylcholine nicotinic receptors (nAChRs).
We detected MAPK family phosphorylation, such as ERK1/2, JNK1/2, and p38MAPK, in neuronal cells treated with BSO to identify the mediator of the ACE and QCT antioxidant effects against BSO-induced cell death.
Serotonin, also called 5-hydroxytryptamine [5-HT], is an important neuromodulator of brain development and the structure and function of neuronal (nerve cell) circuits.
To improve the physiological relevance of neuronal culture conditions, Bardy developed BrainPhys medium to better represent the environment experienced by neurons in the human brain.
At present, however, the role of RIP140 in neuronal differentiation is not clear.
By monitoring neuronal activity in the zebrafish brain, Kawakami thinks that researchers may also be able to screen chemicals that affect neuronal activity in the brain.
The neuronal ionic mechanism of excitability is regulated by Ca2+ inflow in brain neurons (such as hippocampal pyramidal neurons).
The Salk researchers used a retrovirus to introduce Sox2, a transcription factor that acts as a switch in neuronal development, into CB cells.
The TNF[alpha] could induce cell death in neuronal cell lines and primary cortical neuronal cultures.

Full browser ?